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1. Introduction
—

In this monographwwws givqu mathematical analysis of

spectral methods for mixed initial-boundary value problems.
Spectral methcds have become increasingly popular in recent

years, especially since the development of fast transform

methods 4aee—SeC7~iﬁT?>with applications in numerical weather
prediction, numerical simulations of turbulent flows, and other
problems where high accuracy is desired for complicated solutions._
We do not discuss the sophisticated applications of spectral .
methods here; a survey of some applications is given in Sec. 15.
Ingtead, we concentrate on&the development of a mathematical theory
that explains why spectral methods work and how well they work.
Before presenting the theory, we begin by giving some simple
examples of the kinds of behavior that we wish tc explain.

Spectral methods involve representing the solutior to a
probhlem as a truncated series of known functions of the inde-
pendent variables. We shall make this idea precise in Sec. 2,
but we can illustrate it here by the standard separation of
variables solution to the mixed ini-:ial-boundary value problem

for the heat equation.
Example 1.1: Fourier sine series solution of the hezt equation.

Consider the mixed initial-boundary value problem

2
ulx,t) L 2ulyt)  (pex<nm t>0  (lla)
90X
u(0,t) = u(m,t) =0 (t > 0) (1.1b)
u(x,0) = f(x) (0 < x<m . (1.1c)

o w3 - g ‘
"] r “ . - . [ Syt
Rl bg‘
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The solution to (1.1) is

o«

u(x,t) = ] a (t) sinn x , (1.2)
n=1
-nzt
an(t) = fn e (n=1,2,...,) (1.3)
where

"
fn s %-/rf(x) sin nx dx (n=1,2,...,) (1.4)

0

are the coefificients of the Fourier sine ueries expansion of
f(x). Recall that any function in L2(0,ﬁ) has a Fourier sine
series tha*t converges to it in L2(0,n): the Fourier sine series
of any piecewise continuous function f(x) which has bounded
variation on (C,n) converges to %[f(x+)+f(x-)] throughout

(0,7, (see Sec. 3).

A spectral approximation is gotten by simply Eruncating

(1.2) to

-

ug(x,t) = ] a (t)sin nx (1.5)
n=1

and replacing (l.3) by the evolution equation

dan 2
e = - nYa (n=1,...,N) . (1.6)
with the initial conditions an(O) = fn (n=1, <. «,N)

The spectral approximation {(1.5-~6) to (l.l) is an ex-
ceedingly good approximation for any t >~ 0 as N + «

In fact, the error u(x,t) - nN(x,t) goes to zero more 1apidly
2
than e Nt as N + = for any t > 0 . 1In contrast, a finite

difference approximation to the heat equation using N grid points

_2__.
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in x but leaving t as a continuous variable (a ‘'semi-
discrete' approximation) leads to errors that decay only
algebraically with N as N + =, [Of course, if we solve
(1.6) by finite differences in t the error of the spectral
method would go to zero algebraically with the time step At.
Howevzr, we shall neglect all time differencing errors for now
and ctudy only the convergence of semi-diacrete approximations.

Time-differencing methods are discussed in Sec. 9.

Example 1.2: Fourier sine series solution of an inhomogenecus

heat egquation.

Not all spectral methods work as well as the trivial one
just outlined in Example l.l. Consider for example the solu:ion

to the problem

L2
%% = i_§ + 1 (0 < x<7mn, * > 0)
Ix

with the same initial and boundary condit.ions &s before.

The Fourier sine coefficients of the exact solution are now

-nzt —nzt

an(t) = f e + —ﬁg (1-e
™

0 e (1.7)

where e = 0 if n is even and e, = 1 if n 1is odd. Spectral

approximations are now given by (1.5) with (1.6) replaced by

da
n 2 4 _
3t = - n an + m en (n=1,...,N) ,



the solution of which is

truncation error

the

as N =+ ~» ;

X, 0~x~~n,

to be anticipated

(1.7) for n=1,...,N. Now the

u(x,t) - uN(x,t) no longer decays exponentially

error is of order N3

W

as N for fixed

and t > 0 . In other words, the results

from this spectral method behave asymptotically

as N * © in the same way as those obtained by a third-order

finite-dif ference scheme l(in which the error goes to zero like

Ax3 = (n/N)jl. For this vroblem, straightforward < >lution by
finite differences may be more efficient and accurate than solution

by Fourier series.
The last example may be disturbing but even more serious

difficulties confront the unwary user of spectral methods, as
the next example should make amply clear.
one-

Example 1.3: Fourier sine series solution of thz

dimensional wave equation.

Consider the mixed initial-boundary value problem for the

one-dimensional wave equation

J R}

fult) o, bt L oxy ot (0~ x <, t>0) (1.8a)

u(o,t) =0 (t > 0) (1.8b)

u{x,0) =0 (0 ~ x ~ 1) (1.8¢)
The exact solution to this well posed problem is u(x,t) = xt.

This solution can alsc be iound by Fourier sire series expansion

of u(x,t). To do this, we substitute (1.2) into (1.€) and re-

expand all terms in sine series. The Fourier expansion of Ju/Jx

PR



Ju T .
U = 1. 9
™ nzl bn(t)31n nx ( )

where integration by parts gives

2 7 du 2n [
b (t) = § [ g5 sin nx dx, = - S5 [ u cos nx dx
0 0
2n ¢ K
- - 1? ¥ a (t) / sin mx cos nx dx, (1.10)
n=1 0
4 3 nm ()
C;‘—{ a‘n -
mel nz-m2
m+n odd

n+l

Also the Fourier sine coefficients of x are 2/n(-1) and

the Fourier sine coefficients of t are (4t/nn)en, where e, = 0
if n is even and e, = 1 if n is odd. Equating coefficients

of s8in nx in (l1.8a) we obtain

da o 4
n__4 5 om 2y e A e (n=1,2,...). (1.11)
dat T mel n2m ™ O T on

m+n odd

The Fourier sine coeffi~.ents of the exact solution

u(x,t) = xt are

2 n _
an(t) -5 (~1)'t n=1,2,...)
It is easy to verify by direct substitution that these coefficients
satisfy (1.11) exactly; in particuvlar, the sum in (1.11) converges

for all ¢t.
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Now suppose we employ a spectral method based on Fourier
sine series to solve this problam. We gseek a solution to (1.8) in
the form of the truncated sine serias (1.4)., If the exact co-
efficients an(t) are used in (1.4) then u(x,t) - uN(x,t) + 0
as N + = ; for each fixed x , 0 < x <, and t - e
error is of order 1/N as N + » (see Sec. 3).

However, it is not reasonable to assume that the expansion
coefficients an(t) are kriown exactly in this case because of
the complicated couplings between various n in the system
(1.11)» It is more reascnable to determine them by numerical

solution of an approximation to (1.1l1). Galerkin approximation

(see Sec. 2) gives the truncated system of equations

N
da
o D % -1)" + "—‘ﬁ te, (n=1,...,N) (1.12)
m=l n -K
m+n odd

The truncation of the infinite system (1.11l) to the finite
system (1.12) is a stradard way to approximate infinite coupled
systems. Unfortunately, it need not work. In Figs. 1.1-1.2
we show plots nf tne approximations uN(x,t) at t = 5 given
by (1.4) for N = 50,75. These plots are obtained by numerical
solution of (1.12) with an(O) = 0; the time steps used in the

numerical s~slution of (1.12) are so small that time differencing

errors are negligible. It is apparent that the approximate solu-
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Fig. 1.2. A plot of the Galerkin approvimation FzAx.nv to (1.8)
for N=]5 at t=5. This solution is obtained by numerical
integration of (1.12). Time differencing errors are negligible.

The exact solution u = xt at t=5 41g alsec shown.
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tions with N finite do not ¢ .verge to the exact solution as N

increases! The divergence of this spectral method will be ex-

plained in Sec. 6.
Not all spectral methods give such poor results. A properly

formulated and implemented spectral method gives results of
striking accuracy with efficient use of computgf resources.
The choice of an appropriate spec ral method is governed by
two main considerations:
(i) Accuracy. In order to be useful a
spectral method should be designed to give results
of greater accuracy than can be obtained by
mcre conventional difference methods using similar
spatial resolution or degrees of freedom. The choice
of appropriate spectral representation depends on the
kind of boundary conditions involved in the problem.
(ii) Efficiency. 1In order to be useful the spec-
tral method should be as efficient as difference
methods with comparable numbers of degrees of
freedom. For similar work, spectral methods
should produce mcre accurate results than
conventional methods.
In Sec. 15, we present a catalog of different spectral methods
and indicate the kinds of problems to which they can be most use-

fully applied.

Many examples of efficient and accurate spectral methods will

be given later.




2. Spectral Methods

The problems to be studied here are mixed initial-boundary

value prcblems of the form

QEigtEL = L(x,t)u(x,t) + f(x,t) (xeD, t >0) (°.1)

(x e 3D, t > 0; (2.2)

1
o

B(x)u(x,t)

g(x) (x ¢ D) (2.3)

]

u(x, 0)

where D is a spatial domain with boundary 3D , L(x,t; 1is a

linear (spatial) differential operator and B(x) is a linear

(time independent) boundary operator. Here we write (2.1-3)

for a single dependent variable u and a single space coordinate

% with the understanding that much of the following analy-

sis generalizes to systems of equations in higher space di-

mensions. Also, attention is restricted to problems with

homogeneous boundary conditions because the solution to any

problem involving inhomogeneous boundary conditions is the sum cf

an arbitrary function having the imposed boundary values and

a solution to a problem of the form (2.1-3). The extension to

nonlinear problems will be indicated at the end of this section.
Before discussing spectral methods for solution of (2.1-3) let

us sct up the mathematical framework for our later analysis.

It is assumed that, for each t , u(x,t) is an element

of a Hilbert space H with inner product ( , ) and norm

| ~l] . For each t > 0 , the solution’ u(t) belcngs to

the subspace B of H consisting of all functions u ¢ H

! We will often denote u(x,t) by u(t) when discussing u as
a function of t.

-lo-.
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satisfying Bu = 0 on 9D . We do not require that u(x,0)=g(x)e B
but only that u(x,0) ¢ N The operator 1. is typically an

unbounded differential operator whnse domaein :5 dense 1in,

¥

but smaller than, P For example, if

L = 3/3x and Y= L,(0,1), the dowain cf L can be
s

chosen as the densce set of all absolutely continuous functions on
0 <x <1,

If the problem (2.1-3) is wcll poscd, the cvolution operator
is a bounded lincar operator from K to B . Boundedness implics
that the domain of the cvolution aperator can be extended in
a standard way from the domain of L to tho whole space H
(Richtmyer & Merton, 1967, p. 34). For notational convenicnce

we shall assumc henc2forth that L 1is time indcpendent so that

the evolution operator is exp(Lt). In this case the formal so-

w0

lution of (2.1-3) is

t
u(t) = eLtu(O) +f C!L(t_S)f(s)(’s. (2.4)
0

This formal solution is justified under the conditions
that f£(t) , Lf(t) , and sz(t) exist and ore continuous
functions of t in the norm ||+|}] for all t 2 0 (sce
Richtmyer & Morton, 1%67).

The semi-discrete approximacions to (2.1) to boe stuldiced here

are of the Zorm

-11-
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BuN(x,t)

—-—-—-ér— = LN UN(X,t) + fN(x't) (2.5)

where, for each t , uN(x,t) belongs to an N-dimensional sub-

space B of B, and L is a linear operator from H to B

N N

of the form

L,=P LP . (2.6)

Here PN is a projection operator of H onto BN and
= \J ass o h: . .
fN PNf . We shall assum> that B N c R N when N < M

For definiteness, we shall also assume the initial conditions for
the approximate equations (2.5) to pe uN(O) = PNu(O) where
u{0) = g9(x) 1is the initial condition (2.3). Specific

examples of projections PN and the resulting approximations

LN will be given below.

According to this general framework, the formulation of a
spectral method involves two essential steps: (1) the choice of
approximation space BN: and (i1i) the choice of the projection
operator PN . It wili turn out that the mathematical analysis
of the methods also involves two key steps: (i) the analysis of

how well functions in  H can be approximated by functions in

BN (see Sec. 3) and, in particular, the estimation of
| |u - PNull for arbitrary ucll; and (ii) the study of the

'st. bility' of L (sec Scc, 4), Finally, thexe are the

important practical questions of how to discretive time (soo
Sec. 9) and how to impiement spectral methods efficiently (see
Sec. 10). All these censiderations will be reviewed in

Scec. 15,

-12-



Galerkin approxination

A Ralerkin approeximation to (2.1-3) is constructed
as follows. The approximation Uy is sought iii the form of
the truncated series
N

uN(x,t) = nilan(t) ¢n(x) - (2.6)

where the time-independent functions ¢n are assumed linearly
indeperdent and O B N for all n. Thus, uN(x,t) neccssarily
satisfies all the boundary conditions. The expansion coefficients

an(t) are detornined by the Galerkin oquations

d A ]
-a-": (OnluN) = (¢naL \JN) + (C)n,f) (n=-L,...,N) (2.7)
or
N da_ N
mgl (olx'¢“\) z—*{-— = Zlanl(¢n'L¢n\) 4 (Qn'f) .

These implicit equations for an(t) can bc put into the
standard explicit form (2.4-5) by defining the projection

operator PN by

N N

Pulx)= § 7}

3 (¢_,u) ¢ (%) (2.8)
n=1 = m n

®hm
1

where Py 9rc¢ the elements of the inverse of the N x N matrix

whos¢ entries arc (¢n,¢m)a

Note that the relation
N N

Pu = ) )

PLu)d (%)
n=1 m= N n

p.. (¢,
1 pmitm
holds Zor all projection operators Py» However, the specific

rrojection operator (2.8) is particular to Galerkin approximation.

- 13 -
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The Galerkin equations (2.7) may be characterized as follows.,
At each instant t, we assume Lhat 2he expansion coeff{icients a_ (t)
n

in (2.6) are known and seeck values for the N independent quantitics

dan/dt (n=1,...,N) that minimize

3u du
N N
(at LuN,§€~ - LuN) .

The resuliting equations for dan/dt are (2.7).

Exampnle 2.1: Fourier sine series
¥

I1f we choose H = Lz(o,n) and ¢n(x) = sin nx , we re-
cover the Galerkin approximations given in Example 1.1-2 for the
heat equation and in Example 1.3 for the wave equation. Eveyy
function ueLz(O,W) has a Fourier sine series that converqges
in the L, norm, so that [{u - PY Il 0 as N » o,

However, as 1llustrated b§ Example 1.3, this does not ensurce
-» O

that the Galerkin approximation uy - cenverges to u as N .

Example 2.2: Chebyshoev series

We choose H to be the space of functions on
the interval |x| < 1 that are squarce integrable with respect

to the-weiqht function 17V 1-x?% . 1f the problem is

gl , (2.9b)

f
H

u(-1,t) 0, ulx,0)

which is a slight gencralization of Example 1.3, it is appro-
priate to choose the expansion functions for the Galerkin approxi-

mates to be ¢ (x) =T (x) - (-7 _(x). Here T (x) is the
n n 0 n

Chabyshev polynomial of degrec n definiced by Tn(COSO) = cos nt
2
when X = cos0 ; thus, To(x) =1, T](x) =X, T (x) = 2x =1, T3(x\

4x3 - 3x,... . Obscrve that ¢n(x) satisfics the boundary condition

il
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¢h(-l) = 0 because Tn(-l) = (-1" for all n. The properties

of Chebyshev polynomials are summarized in the Appendix.

The Galerkin equations (2.7) are obtained explicitly as

follows. First, the definition of Tn(x) and the substi-

tution x = cos § imply that

1t
('l‘n,'rm) = fcosn 0 cosm ede-;-cn Gnm'
0

where

1
(£,9) -f f(x)g(x)./l-x éx
-1

Here C, =2, ¢, =1 (n>0) and 6 =0 if n¢m, 1

n
n = m. Therefore,

=T + (_1yntm
(¢n.¢m) x 6nm + (=1) .
Next, the Chebyshev polynomials satisfy

Taey (X) Th_y (%)

2T (x) = —=F 1 (n 2 2),

as may be verified by substituting x = cos 6. Therefore,

’n(-l)n+1m + ™ n<m M+ n oua
(¢odp) = {7(-1)"*In n>m u+n odd

1] n + m even "

if

Using these results, (2.7) gives the Galerkin approximation equations

-15-



daﬂ n N N
I IR ) (‘1)mﬂm -=-2 ] pa_+

m=] p=n+l P
F+n odd
n N A n A
+ 2(-1) pgl paj+ £, + 2(-1) £, (n=1,...,N),
p odd

Here 2n - (Tn,t) for n=90,...,N

These Galerkin equations can be simplified by introducing

the notation ag, = - ) (-l)mam, so that (2.6) becomes
m=l

N
uy(x,t) = Zo g, (£)T, (x) . (2.10)
nm=

Substituting the ahnve exnression for LAY the Galerkin equations

for an can be rewritten as

dan 2 ? - 1 n
I "= pa +f + —=— b(t)(-1)" (n=0,...,N), (2.11)
t €a p-“+;i P n ®n '
p+h c3:
N
n=0

Here b(t) is a 'bourdary' term that ensures main*enance of the
boundary condition (2.12). Using f2.12) it is easy to show that

the explicit form of b(t) is

3 ; N (n2a +f )| = 2 au“‘ 3 1)“2]
- -1 a + = -2, (=
blt) Keg [nz-:o( "oy “} 5:%[5;‘_ ‘gu=1 £m0 n



Tau approximation

The tau method was invented by Lanczos in 1938 (see Lanczos
1956). First, the expansion functions °n (n=1,2,...) are
assumed to be elements of a complete set of orthonormal functions.
The approximate solution uN(x,t) is assumed to be expanded in
terms cf those functions a3 in

N+k
I oa ()¢, (x) . (2.13)

(x,t) =
N n=1

Here k is the number of independent boundary constraints BuN-O

that must be applied. The important difference between (2.13)

for tau approximation and (2.6) for Galerkin approximation is that
the expansion functions ¢n in (2.13) are not required individually
to satisfy the bounaa., constraints (2.2). The k boundary

constraints

N+k
nzl 8 B ¢y = 0 (2.14)

are imposed as part of the conditions determining the expansion co-

efficients a, of a function in BQ. Than, the projection operator

Py is defined by

ul J, het)

N k
XA¢+rb¢
n=] n'n ma) T H+W (2.15)

n=)

—1‘7-.



 ————— T

where b (m=l,...,k) are chosen so that the boundary con-
m

straints are satisfied: BPou = 0 for all u e 4.

1t follows from these definitions that the tau approximation
to (2.1-2) 1is given by (2.13) with the k equations (2.14)

and the N equations

dan

a_t- = (@niL uN) + (¢ncf) (n=1,...,N) . (2.16)

An equivalent formulation of the tau method is given as

follows: The equations for the expansion coefficients a, of the

exact solution u in terms of the complete orthonormal basis ¢n are

u(x,t) = ] a (t)e (x) ,
n=1

da_
a-t—-g (¢n1L“) + (@n,f) (n‘l,Z'-a-) . (2.17)

The tau approximation equations for the N+k expansion co-

efficients of uy in (2.13) are obtained from the first N

equations (2.17) with u replaced by uy and the k boundary

conditions (2.14).

The origin of the name 'tau method' is that the resulting

approximation uy is the exact solution to the modified problem

3uy ®
T by + £+ pzl rp(t)¢N+p(x) (2.13)

-18~-
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which lies in tSN for all t > 0 . For each initial value problem
and choice of orthonormal basis ¢n (and associated inner product),
there is a (normally unique) choice cf t-coefficients such that

uy e.EN , nhamely

T, == (gype Loy + 0) (p = ktl, k+2, ...)

The remaining tau coefficients Tyr Tgeeess Ty are determined by
the k boundary constraints
ou,.
B “h = 0
ot
and the N dynamical constraints (2.17) for n = 1,...,N.

Example 2.3: Fourier gine series

For all of the aprlications given in Example 2.1, Galerkin
and tau approximaticns based on ¢n = % sin nx are identical
(except for the scaling factor 2/ ) since the orthonormal

expansion functions ¢n satisfy the boundary conditions.

Example 2.4: Chebyshev series

I1f we choose ¢n+l\x) =/1%;n Tn(x) where c
(n > 0) and apply the tau met .0d to the problem (2.9) the result
can be recast into the form »f equations (2.10-12) with Db(t) = 0
and (2.11) only applied for n=20,1,...,N-1 instead of

n=290,1,...,HW. Thus, the tau equations for the one-dimensional

wave problem (2.9) are (2.,10) with

dan 2 ! p
- m - L pa_+ f (0 < n < N-1) (2.19)
at “n p-n+l p n
p+n odd
N n
I (-1) an(t) = 0 (2.20)
n=0

"
o
(]
O
2}
o
v
—

In this problem, J% Tl(t)- aﬁ - QN while Tp(t)
-19-
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Example 2.5: laguerre series

Here wa choose }/ to be the space of functions that are
square intuagrable or 0 < x <= with respect to the weight
function e © . We choose the expansion functions to be
¢n(x) = Ln(x) where Ln(x) is the (normalized) Laguerre pnly-
nomiail of dagree n: Lo(x) = 1, Ll(x) = l-x,

L) =1 - 2x + 5 %%, ... .

Suppose we wish to solve the problem

[
+

u(o,t) = 0 , u(x,0) = g(x) (2.21b)

by seeking an arproximate solution of the form

N
nN(x.t) = ﬁ

n=0

To derive the tau equations for an(t), we note that Ln(x)

. . - VoL o
gsatisfies Ln(O) 1, Ln L

ntl © Ln’ n=20,1,... and

= ™ -X - . .
(L, L) = )y Ln(x)Lm(x)e dx § m © Thus, the tau approximation
(2.17) is
dan N
—_— = L a + (L ,f) (n =0,1,...,N=1) (2.23)
dt p=n+l n '

while the boundary condition is

N
I a = 0 . (2.24)

-20~-
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u, = £f(x,t) (0 < x <w, t > 0) (2.21a)

an(t)Ln(x) . (2.22)



Similarly, the Laguerre-tau approximation to the heat

equation problem

ut-uxx*'f(X.t) (0 < x <>, t > 0)
(2.25)
u(o,t) =0 uix,0) = g(x)
is given by (2.22), (2.24; and
dan N
p=n+1

Collccation or pseudospectsal approximation

The projection operator PN for collocation [sometimes
called the method of selected points (Lanczos 1956) or pseudospectral
approximation (Orszag 1971c)] is defined as follows. Let

Xy eXgseeosXy be N points interior to the domain D. These

points are called the colloration points. Also let ¢n(x)

(n=1,...,N) be a basis for the approximatior space B Ny and

suppose that det ¢n(xm) ¥ 0. Then for each u ¢ W

N
Pu= 1 a ¢ (x) (2.27)
n=}
where the expansion coefficients a are the solutions of the

equations



[TV W
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N
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Zl a, ¢ tx,) = ulx) (i=l....,N) . (2.28)
n=

Thus, collocation is characterized by the conditions that

PNu(xi) = u(x,) for i=1,...,N and Pyuc BN . Notice that

N

the results of collocation depend on both the points X, and

the functions ¢n(x) for n=1,...,N .

Example 2.6: Fourier sine servies

If we wish to solve the problems forxmulated in Examples
1.1-3 by collocation instead of Galerkin or tau .nethods
we proceed as follows. We choose the space }*= Lz(o,n).
the expansion functions ¢n(x) = gin nx (n=1,...,N), and the
collocation points X, = 1uj/(N+1* (3=1,...,N). The

J
collocation equations

N :
21 a, sin gdy = ulxy)  (3=1,...,N) (2.29)
n=

have the explicit solution

N

) o
T .Zl u(xs)sin He c(n=1,...,N) (2.30)
J.

2n

This result rollows from the relation

N -
«omjn _.  7wkn _ N+l
Ioeingmysin iR = S5 8y

-22-



valid fer 0 < j,k < N+1 . Thus,

N
Pu= ] a sin nx (2.31)
n=]

where a_ is given by (2.30).
It follows from (2.29-31) that R
N
PLPu = | b, sin nx
n=1

where b = - n? a (n=1,...,N) if L = 32/8x2 . and

n
N m sin oo
2 N+l _
m= N+ N+1
m+n odd

if L = 23/9x .

Example 2.7: Chebyshev collocation for the wave equation

Suppose we wish tc sc’ve the one-dimensional wave problem
(2.9) using collocation. An appropriate basis for the approxi-

mation space is the set of functions ¢n(x) = Tn(x) - (-l)nTQ(x)

By
(n=1,...,N) intrcduced in our discussion of Example 2.2 above.
We choose the collocatizcn points to be the extrema of the
Chebyshev polynomia3 Ty (x) satisfying |x| <1 . Since
TN(cos ) = cos N8, these extrema lie at Xy = cos %% for

j =0,...,N1 . The point Xy = - 1l is also an extremum of

-23- j




Tn(x) but it iz not inclyded in the set of collocation points
Lecauge the boundary conditions for (2.9) are imposed at x = -1
80 0 (-1) = 0 for all n .

Ao in Example 2.2, the expgnsion coefficients a for

n=1,...,N may be augmented by defining a, = g (- 1)

-]
so that »

uglx,t) = ] a, (t)T (x) .
n=0

z It may then be shown that the coliocation aquatians for an(C)

that fcllow from (2.9) are

d‘n 2 . 1l n
AT~ & lea £+ g b(e)(-D7 (n=0,...,N)  (2.32)
n p=n+ n
p+n odd
v n
I (-1) a (t) =0 (2.33)
n=0

where € = (T ,f) and ¢y =cy =2, S =1 (0 <n<N.
lflere Db(t) is a 'boundary' term that is used to ensure complianéo

with the boundary condition (2.33). It may also be shown that

rs
b(t) = - %- Z -1)"%(n’ a, +f ) = % l N - { (-1)"¢ ]

n=0

-24-



The reader should observe the close similarity between the
Chebyshcv Galerkin, tau, and collocation equations for the problem
(2.9). The only difference between them is the way the boundary
term b(t) enters. In the Galerkin equations (2.11), b(t) appears
with the coefiicient (-l)n/cn: in the tau equations b(t) enters
with the coefficient GnN so it appears only in the equation for
ay as a tau coefficient; with collocation, the coefficieni of
b(t) is (—l)n/En. This close similarity between the three mathods
for the wave equation can also be seen by observing that when
f(x,t) is a polynomial of degree N in x, all three approxi-
mation methods give Nth degree polynomial approximations uN(x,t)

that satisfy exactly the initial-boundary value problem

v 3
5-;!‘- + 5-:-”1 = £(x,t) + T(t)Qy(x) (2.34)

uN(—l,t) = 0 .

In the tau method, QN(x) = T“(x): in collocation,

N
N-1 n+N
Oulx) = w1 (x-x;) = 22N J LM gy ad 21Ny
‘N 3 n N N
3=0 n=0 ©n
where xj = Ccos %% (4 = 0,...,N-1) are the collocation points;

finally, the Galerkin equations (2.10) are obtained if

T
Q. (x) = ] —-—=—T (x)
N neo Cn n



For all three methods <t(t) is uniquely determined by the
requirement that uN(x,t) he a polynomial of degree N in x
that satisfies the boundary condition uN(-l,t) = 0 for all ¢t .

Example 2.8: Chebyshev spectral methods for the heat ecuacion

To illustrate further the nature of the differe:ices between
Galerkin, tac and ccllocation methods, we apply them to the

heat equation

2

%% =284 f0t) (=l<x<l, t>0),
ax
u{~1l,t) = u(l,t) =0 (t > 0), u(x,0) = g(x) (-1 < x <1).

We approximate u(x,t) by

N
u (X, t) = ) a ()T (x)
n=0

The Galerkin, tau, and collocation equations for an(t) <re all

of the form

da N

.1 | 2_ 2 S,
¥ "o, pﬂ§+2 ple’-n’)a +£ (£)4b) (1B +b) (1B, (2.35)
p+n even
I ¥ oenn
a = -1} a_ =0, (2.36)
n=¢ O =0 n



~

whore |
n

il

(Tn‘f)’ Eqs. (2.36) arc just a restater-nt of

uN(il,t) = Q. '"The terns bl(t) and bz(t) in (2 3. re

boundary terms that ensure compliance with the boundary condi-
tions (2.36). The only d'fferences between the three approximation

methods liec in the cocfficients B and B

In 2n’

In the tau mcethod,

Bln = 6n,N-l ! B2n - 5nN * (2.37a)
In the Galerkin method,

n
= _L = .(::_l_)____ . -
Bin T ¢ ! Bon c ! (2.37b)
n n

this result follows using the expansion functions

To(x) n even
¢ _(x) = T (x) -
n n T (x) n odd
that satisfy ¢n(il) = 0 and augmenting the expansion coof-
ficients a  for n > 2 by ajg=-Ja, and a; = -} a,
Finally, with collocation performed at the points xj = COs %}
(i = 1,2,...,N-1) the cocfficients Bl and R, in (2.35)
n <
are given by
n
1 (-1) -
B = o B B e . (2.3}\‘)
In g, 2n cp
It may also be verified that the boundary terms b, (t)

and bz(t) are of the rorm

2 N i 4 N 1

9w . 4\ -1y f 3.088

by(t) = ¢, |3l + -yfof“ MO b + nz-o( LD I N )
ox '.\'?—‘i'l n= ’ X==1
-27-
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for i =1,2. Here
“e=<-k S _=3-DY
c2+ = 'i ’ c2_ = i("l) ’

for the tau method;

N
c N+3 c (-1)
B2 - - » - = i »
1+ N2+N 1 Ne+N
c . =2 S c o _ N+2
2+ N2+N 2- N2+N
for the Galerkin method;

c - .1 c .

1+ N 1-=0

c = c = 1

o+ = 0 9- = "N

for the collocation method.

In the previous examples the only difference between Galerkin,
tau, and collocation approximations is their treatment of the boundary
terms. However, in more complica*ed problems, there are significant

differences between these app:..ximations. The next example illustrates

the influence of quadratic nonlinearity.

Example 2.9: Chebyshev approximations to Burgers' equation

Chebyshev series approximations to the solution u(x,t) to

Burgers' equation

2

du v . ,3u x|51,t>0) (2.39)
3t T Uax ¥ o2 (|x|*1,

u(zl,t) =0

u(x,0) = f (x)

[rE———



are obtained by methods very similar to those for linear equations.

In general, spectral approximations to the nonlincar equation

au

t
are of the form
e 41
, Pl Py AP uy) (2.41)
where PN is a projection operator. The projecction operator

. . . +
P can be that for Galerkin, tau, or collocation approximations.

N
If we write

uN(x,t) =

n-

N
io an(t)Tn(X),

" €hen the Galerkin approximation to (2.39) is given by

da - - 2 2 n
n_ . m{m“-n“)a_ + b, (t) + b (L) (-1)
S T 2y pamap+\) ) (x )m +(8) -
- mtn even
lpl<N (0<n<N) ,
. m+p2n+l
n+mtp odd
(2.42a)
{ + .
Observe that if (u, Au) = 0 so the system (2.40) has tho
energy integral 3(u,u)/0t = 0, then (2.41) has the enerqy
integral a(uN,uN)/Bt = 0 provided that the px ~tion opecrator
PN is self~adjoint. This follows from
{ (uN,PNA(PNuN)) = (YN%N,A(PNUN)) = 0.

An example of a sclt-adjoint projection operator PN

Galerkin operator (2.8).
only if the inner product
approximation is the same

is the

Energy conservation is quaranteed
used in the definition of the calerkin
as that in the encrey integral.

-~29..
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N
ag = I a (-1"=0, (2. 42b)

where Sm = c|m| alml for |m| ¢ N. The tau equations are identical
except that (2.42a) only applies for 0 < n <N -2 and Db, =Db_= 0.
On the other hand, the collocation equations obtained using the collo-

cation points xj = cos %L for j=1,...,N-1 arze just (2.42b) and

N
- dan o ‘
3 < 2] p a a -2] p a3,
fin] <N |m} <N
|p|sN |p|<N
n+p>n+l m+tp>dN-n+1l
n+m+p odd n+m+p odd
N 2 2 =
+ v ] mm®n9a_ + b (t) + b_(t)(-1)" (2.43)
n=n+2
m+n even
(0SnsN»
where EO = EN = 2 and Er =1 for n # 0,N. Observe the appear-

ance of the 'aliasing' term as the second sum on the right side of

(2.43). Aliasing is discussed in detail by Orszag (197a, 1972).

Example 2.10: Chebyshev approximations to u, + F\u)x = 0

Galerkin and tau approximations to the solution to

u, + F(u)x =0 (2.44)

where F(u) is arbitrarily nonlinear, arc very unwieldy both

to write down cxplicitly and to solve on a computer. On the other hand,

-30~



while the collocation equations may‘alao be hard to write down

explicitly, they lend themselves to ready solution without their
explicit form being xnownl!

The collocation approximation to (2.44) is obtained as follows.

'Ne use the relation
duy
(Flug)), = I (uy) = ° (2.45)

Since auN/ax can be computed explicitly in terms of u, asa poly-
nomial in x of degree N-1, it foliows that (F(uy)), can be
evaluated by this formula at each of the collocation points assuming
that F'(z) is a known function; tkus, the¢ collocation approxima-
tion to (2.44) is determined.

There is a slightly different collocation procedure that can also

be applied to (2.44). It has the operator form
9
5-:“ + Py 3= Py Fluy) = 0 (2.46)
. which is usually not the ssme as the collocation approximation of
the form (2.41) described above. In this approximation, auN/at is
coamputed by first using collocation to obtain PhFh%R from Uy ard then
{ using the collocation aproximation PNa/Bx to 3/3x given in Example 2.7.
The collccation approximation given by (2.41) o (2.45) differs fram

(2.46) Dby the tem
Py = (1-P) Fluy)
N ox N

which is generally not zero. However, if F'(z) is not known

accurately then (2.46) may be the only viable method.
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3. Ssurvey of Approximation Theory

The remarxable convergence properties of aspectral methods to
be discussed later owe to the rapid convergence of expansions of
smooth functions in series of orthogonal functions. We present
a summary of the relevant theory here.

Fourier series

The complex Fourier series of f(x) defined for 0% x S 2q

is the periodic function

gl = I a e“"‘, (3.1)
vhere
n .
a, = 5 [ fxe HFay . (3.2)
0

We shall show below that if f(x) is piecewise continuous and has

bounded total variation then
g(x) = § [£(x+)+£(x=)) (3.3)

for 0 < x S 2rn and g(x) 1is repeated periodically outside the interval

0 < x « 2r. In particular, g¢(0) = g(2n) = §[£(0+)+£(27-)]) .

The Foulrier sine series of a function f(x)! defined fci

0 <x <n 1is the function

g (x) = kzl a, sin kx (3.4)
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wvhere

= % ] £(x) sin kx dx . (3.5)

The Fourier cosine series of a function defined for 0 < x < =« is

go(x) = ) ay cos kx (3.6)
k=0
where
2 ™
a, = -ﬁ; g f(x) cos kx dx (3.7)

with €y = 2, Cp =1 (k > 0). It follows easily from (3.3) that if

f(x) is piecewise continuous and has bounded total variation then
gg(x) = £_(x) (3.8)
g (x) = fc(x), (3.9)

where fs(x) = fc(x) = F[E£(x+)+f(x-)] for 0 < x < m,
fs(-x) = -fs{x), fc(-x) = fc(x) for ~m < x < 0, fs(O) = fs(ﬂ) = 0,
fc(O) = £(0+), fc(n) = f(n-), and fs(x) and fc(x) are extended

periodically outside the interval - m < x X m.

Convargence of Fourier series

To prove (3.3) we define gK(x) as the partial sum
K .
glx) = § ae™* (3.11)
k=~K

(sing (3.2) and the trigonometric sum formula



M cndn TGP e mgpim n

f Jike _ sin((K+d)s)
k==K sin(ss)
we obtain
1 X sin[ (K+3)t)
g (x) = 5= [ £ (x~t)dt (3.12)
x=2n sin{d.. .

The kernel sin(K+g)t/sin ¢t of the integral (3.2) is
plotted for several values of K in Fig. 3.1. This plot
suguests that when f(x) has bounded total variation the leading
contributior to the integral as K + » comes from the neighbor-
hood of t = 0 since the contribhutions from the resi of the in-
tegration region should nearly cancel due to the rapid oscillations

¢of the integrand. Thus,

+c sin( (K+§)t)
f(x-t)dt (X+e) (3.13)

gg(X) v 5= |

-

sin(it])

for any fixed € > 0. Since ¢ may be chosen small we may replace
sin #t by 3t with a maximum error of 0(53). Also since f (x-t)
is piecewise continuous, we may assume that f(x-t) is continuous

for 0 <t 2 ¢ and -¢ St <0 with at worst a jump discontinuity

at t = 0. Th-~cefore we may replace f(x-t) by f(x-) for t > 0

and f(x+) for t < 0 giving

-3‘-
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1 € sin(K+3)s
ge(x) ~ [f(x+)+f(x-)] = [ ——— ds (R+e)
K T o s

Since

1 Lt sin(K+§)s

(E+8)e

1

Fl —5—as=3/
0

. ™
55%—5 ds ~ % { Eig—i ds =% (K+»)
Q

for any fixed € > 0, we oObtain
gg (X) v HEL(x+)+£(x-)] (K+w)

proving (3.3).

In the neighborhood of a point of Jdiscontinuity of £ (x)
for x =0 and x = 27 if {(0+) # £(27-)] tae convergence
of gK(x) to its limit (3.3) as K + » is not uniform. To
investigate the detailed approach of gx(x) to g(x) near a
point of discontinuity X, of €£(x), we use the asymptotic

integral representation (3.13) to obtain

¢ sin((K+3)t)
2) a2 f . f(xg+2— -t)at (K+o)

K+$ -€ K+4

gx(xo+

for every fixed 2z. Since ¢ is assumed small we can approxi-
mate f(xo+s) by f(x0+) for 0 < s < ¢ and by f(xo-) for

-€¢ < 3 < 0, Therefore, for each fixed z and ¢,
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f(x0+) z/(K+&)ain(x+§) f(xo-) €

z sin{K+3)t
(x,+ ) —_— dt + ——
gl( 0 ‘ K"'i n _f{ t T —_—_—t
{K+¢ :
z/ {K+g) (Row)
(K+4?
£xq+) ’z sir. & £(xqy-) ° sin s
s — — ds + — = dax (K-+=)
~g (K+3%) z
fix,+) z £f(x4-)
v — 0 Bin8 gy 3 2in 8 g4 (R+)
Since | sin s/s ds = @, we obtain
gg (Xg+ —%) N FIE(xgH)+E(xgm)] + FIE(RGH-E(x(-)] Silz)  _ (Kem) ..
K+
(3.14a)

for any fixed 2z. Here the sine integral Si(z) 1is defined

si(z) = % é 5-‘-’;‘—8 ds (3.14b)

A plot of Si(z) is given in Fig. 3.2.

The result (3.14) shows that if » - Xy = 0(%) as K + @ then
g (x) - i[f(x0+)+f(xo-)] = 0(1). This shows the nonuniformity of
convergence of gK(x) to f(x) in the neighbaorhood of the discon-
tinuity Xg+ This ronuniform belavior of the limit gK(x)->f(x) as K + =
is called the Gibbs phenomenon.

To illustrate the Gibbs phenomenon in an actwal Fowrier series, we plot

in Fig. 3.3 the partial sums of the Fourier sine series expansion

of the function

f(x) = x/n (0<x:m)
The extended function f£,(x) 1is discontinuous at x = 7 leading

to the Gibbs phenoaenon there.

-37-
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.25

rg. 5.2, A plot of the sine integral Si(z) defined in (3.14b) for 0 < = < 15,
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A8 K + =, the maximgm error of the partial sums of & Fourier
(complex or sine or cosine) series in the neighborhood ¢ f a point
of discontinuity occurs at the maximum of Si(z) .

Since Si'(2) = 0 when 2z =uar for n = :} 322, ..., the maximum
error must occur at ome of these points. It is easy to urgue that

the maximum of Si(z) actually occurs at 2z = n where

% Si(1) % .58949 (3.15)
Thus the maximum overshoot of the partial sums of the Fourier

series near a discontinuity occurs nsar x = Xg + L. for K
K+$

larce and is of magnitude

gx(x0+;%;) -~ £(xg+) ~ .08949[£ (xy+) £ (xy~) ] (K+) (3.16)

where the quantity in square brackets is the jump at Xqe For the
example plotted in Fig. 3.3 the jump of fs(X) at x = 1w has
magnitude 2 rfo the Fourier series gives a local overshoot of

magnitude 0.1793.

As 2z + ¢+ w®, Si(z) + 3t 1 8o that (3.14) is consistent with
the convergence of the Fourier series to f(x0+) just to the right
of X, &nd to f(xo-) just to the left of Xqe The Gibbs phenomenon

only appears when x -+ X, at the rate 1/K as K + =,

Rate of Convergence of Fourier Series

If f£(x) is smooth and periodic, its Fourie. series does not
exhibit the Gibbs phenomenon. The Fourier series of suwchan f(x) con-

verges rapidly and uniformly. Suppose f(x) 1is periodic and has
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continuous derivatives of order p = 0,1,...,n-1 and f(n)(x) is

integrable. Applying integration by parts to (3.2), it follows that

2n
a, = ———l—~ﬁ j f(n)(x)e“ikx dx .
2n (ik) 0

Since f(n)(x)- is integrable, the Riemann-Lebesque lemma

implies that

a, << 1/x" S (k + tw) (3.17)

Note that, because f(x) is periodic, continuity of f(p)(x)
also requires £P (0) = £P (21) . 1t follows from (3.17)
that if £(x) is continuous with £(0) = £(2%) and f£f'(x) is
integrable then ay << 1/k as k + o ; if, in addition, f'(x)
is piecewise continuous and differentiable then 8, = O(l/kz)
as k - =,

Now we can be more precise in our estimates of the error

gp(x) - £(x) . If a, goes to zero like 1/k" as k + =

and no faster, then f(n_l)(x) is discontinuous. In this case.
g (X) - £(x) = 0(&) (K + =) (3.18)
- S
when x is fixed away from a point of discontinuity of f(n-l)
as K+ » , whilas
gg(X) = £(x) = 0(=y) (K + =) (3.19)
K

when x - Xy = 0(%) as K » = where X is a point of
discontinuity of f(n'l)(x).

In particular, if f{x) 1is infinitely differentiable and
periodic [f(x+2w) = £f(x)] , gK(x) converges to f(x) more

rapidl, than any finite power of 1/K as X + = for all x .

a
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Fourier sine and cosine series have convergence properties
very similar to the complex Fourier series just discussed. We
summarize these properties for Fourier cosine series. 1f deri-
vatives of £f(x) of order p = 0,),...,n-1 are continuous for
0<x<n while £P)(0) = £(F)(g) =0 for all odd p < n
and f(n)(x) is integrable, then the Fourier cosine coefficients

given by (3.7) satiafy

a, << /K" (k +=) (3.20)
as may be proven by integration by parts.

Thus, if f(x) is infinitely differentiable for 0 < x < =
and £P*D) gy < £2P*1) (1)~ 6 for p=10,1,... then the
Fourier cosine coefficients a, approach zero more rapidly
than any power of 1/k as k + + » ., 1In other words, if £(x)
is infinitely differentiable on -= < x < «, periodic with period
2n [f(x+27) = £(x)] , and even ([(f(x) = f(-x)],
then the remainder after N terms of the Fourier cosine series
(3.;) goes tO zero more rapidly than any finite power of 1A
ag K + = |

To compare the convergence properties ot Tourier sine and
cosine series, we have plotted in Figs. 3.3 and 3.4 some results
for the Fourier sine and cosine expansions, respectively, of the
function x/nm for 0 < x < m ., As discussed above, the Gibbs
phenomenon 1.. the sine series expansion is evident at x = 71 (see
Fig. 3.3). Observe that the error in the N term partial sum
goes to zero like 1/N as N -~ when x 1is fixed 0 < x < 7 .
The Cibbs phenomenon near x = m <clows the convergence of the
Fourier series for all x. In Fig. 3.4, we plot the error between
the N term cosine series and x/m . Observe that as N + » the

error goes to zero like l/N2 for 0 < x < m and like 1/N when

x = 0(1/N) as N » o ,
' «42-
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Chebyshev polynomial expansions

The convergence theory of Chebyshev polynomial expansions

is very similar to that of Fourier cosine series. In fact, if

g(x) = ] a T (x) (3.21)
k=0

is the Chebyshev series associated with f(x) for -1 < x < 1
then G(8) = gicos §) 1is the Fourier cosine series of
F(0) - f(cos 8) for 0 < 8 < 1 . This result follows from

the definition of Tn(x): since Tn(cos 6) = cos n 8,

a
G(8) = g(cosd) = ] a, cos n® . Thus,
k=0

L 2 1 . -
[ ficoselcos k8 A8 = —=— [ £(x)T) (x) (1-x?) ? ax
0 -1 :

2
a B —
k TCh mCy

(3.22)

where S = 2, Cy = 1 (k > 0).

It follows from this close relation between Chebyshev
series and Fourier cosine series that if f(x) is piecewise
continuwous and if f(x) is of bounded total variation for
~1 < x <1 then g(x) = 3[£(x+)+£(x~)] for each x (-1 < x < 1)
and g(1) = £(1-), g(-1) = £(-14) . Also, if £P)(x) is

continuous for all |x| <1 for p =0,1,...,n~1, and £ (xy is

integrable, then

a, << 1/Kk" (k + o), (3.23)

k
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Since |Tk(x)| <1 for x| <1, it follows that the re-
mainder after X terms of the Chebyshev series (3.23) is asymptotically
much smaller than 1/X" ! as K+ ». If £(x) is in-
finitely differentiable for |»| < 1 , the erior in the
Chebyshev series goes to zero more rapidly than any finite
power of 1/K a8 K =+ o

The most important feature of Chebyshev series is that
their c¢onvergence properties are not affected by the values
of f£(x) or its derivatives at the boundaries x = 3t 1 bhut
only by the smoothness of f(x) and its derivatives throughout
-1 <x < 1. In contrast, the Gibbs phencmenon shows that the
rate of convergence of Fourier series depends on the values of
f and its derivatives at the boundaries in addition to the

smoothness of f 1in tbka interior of the intervzl. The

reason for the absence of a Gibbs phenomenon for the Chebyshev

series of f(x) and its derivatives at x = t1 is due to the fact

; = r(cos 8) satisfies F‘29+1)(o) - F(2P+l)(ﬂ) -0

that Fiv}
provided only that all derivatives of t£(x) of order at most 2p+l

exist at x = 1.

An important consequence of the rapid convergence of Chebyshev
polynomial expansions of smooth functions is that Chebyshev expansions

may normally be differentiated termwise. Sir.ce

P
a T (%) = 0 (k2P) (k + )
dxp

uniformly for |[x| < 1 [see Appendix], if a, * 0 faster than any

finite power of 1/k as k + » then (3.7 ) implies
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g . a, kT (3.24)
ax® ke0 axP

(as may be proven by an elementary uniform convergence argum at).
While Chebyshev expansions do not exhibit the Gibbs phenomenon

at the boundaries x = 2 1 , they do exhibit the phenomenon at any

interior discontinuitv of f(x). In Fig. 3.5 we plot the partial

sums of the Chebyshev expansions of the sign function sgn x:
o T (x)
sgn x = o I (—1)“—*222—}%—-— (3.25)
n=0

Near x = 0, a Gibbs phenomenon is observed; for fixed x # 0,

the error after N terms ic of order 1/N. 1In general, the local

structure of the partial sums (x) of Chebysnev series near a
Ik

discontinuity of f(x) 1is, aside from a simple rescaling, given

by (3.14):

oy =5 ) & SLE (Xt +E (xg=) )

q (xo+ N\~
K lx+%'} 1--x0

1 - % >0
+ S (x4 ~£ (xg)] Si(z) (K+=)

where {x5] <1 and z is fixed. This equation is derived

by a simple extension of the argument used to derive (3.14)

[cf. (3.33) below for the explanation of the origin of the

scale factor 1 l-xo 1.
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Rate of convergence of Sturm-Liouville eigenfunction expansions

Let us consider the expansion of a function £(x) in terms
of the eigenfunctions ®n of a Sturm-Liouville problem: The

eigenfunction ¢n(x) is a nonzero solution to
d don
T PX)g= + (Awix) q(x)) ¢, (x) =0 (3.26)

satisfying homogeneous boundary conditions. To be specific in

our discussion we assume the boundary conditons o, fa) = ¢n(b) =0,
although the analysis applies more generally. We assume that

p{x) 20, wir 2 0, gq(x) 20 for a < x Sb. Wewill also

assume that the eigenfunctions are normalized so that they satisfy

£bw(x)¢n(x)¢m(x)dx =80 - (3.27)
and that they forrn a complete set; the latter property follows if
k“ + » as n + » (see Courant & Hilbert, 1953, p. 424).

The requirement that xn - o follows heuristically as follows:
(3.26) suggests that ¢n(x) has a typical spatial scale of 1//K:',
so0 the requirement that arbitrary f£(x) (with arbitrarily small

spatial scale) be expansible in terms of {¢n} implies that X,

must grow unboundedly with n .,
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We wish to estimate the rate of convergence of the eigen-

funct.on expansion

f(x) = § a ¢ (x) . (3.28)
n=1

Using the orthonormality relation (3.27), the L, - error after

N terms is

N Y ® Ay

b 2 2

[ 1€£x) = [ a ¢ (x)|° wix)axf=| ] a | . (3.29)

a n=l =N+1
Thus, the L,-error may be estimated by —alcnlating the rate i
of decrease of a, as n -+,

Orthonormality of ({¢ } implies that
b
a = £ £(x) ¢, (x)wlx)dx . (3.30)

Substituting w(x)¢n(x) from the Sturm-Liouville equation (3.26)

gives

1l b d d¢n £ d
a, = & £ -cTiP(X)—a‘x-"’Q(X)¢n (x)dx .

n
n
Integrating twice by parts, we obtain

b ‘b
a = 1 p(x)[¢n(x)f'(x)—¢5(x)f(x)]‘_ + fL-j h(x)@n(x)w(x)dx (3.31)
)\n X=a n a
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where

hoo = [- Feoo Eramem] m. GOz

This integration by parts is justified if f is twice differentiable
and h is square integrab.e with respect to w. Under these con-

Giiions and recalling that ¢n(a) = ¢n(b) = (0 , we obtain

= _"“_ ' £ a2y, v ’ _]_._
_— ™ [p(a)¢,(a)fia) P(p) ¢, (LI E(b}] + O(An)

- b 2. (o2 b2
as n + «, since | / h¢ wdx | < [ h*wax [ ¢ wdx = 0(1) as
a a a "
n * m -

Nonsingular Stuim-Liouville problems

To proceed furzher we must distinguish between nonsingu-
lar and singular Sturm~-Liouville problems: a problem is non-
singular if - p(x) >0 and w(x) >0 throughout a 3 x S b. The
important conclusion from (3.31-32) is that if the Sturm-Liouville

prohlem is nonsingular and if £f(a) or £(b) is nonzero then

a_ fi (pa)g) (a)£(a)-p(bign(B)E(D)]  (n + =)

(3.32)

1
(Notice that if ¢n(a) = 0, then ¢n(x) 0 since (3.26) is

seccnd-order differential equation and p(x) # 0).

It is well known [Courant & Hilbert 1953] that the asymgiotic

behavior of the eigenvalues and eigenfunctions of a norsirgular

Sturm-Liouville p.oblem are given by
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A ™ ["“/]b‘/g- ax]2 (n + =) (1.34)
a

X
0 (x) v A sin@xn £ Jgdx) (n + =) (3.35)

Using these relations in (3.33), we find that a, behaves like
1 as n + »,
n

1vis behavior of a. leads to the Gibbs phenomenon in the
expansion (3.28) near those boundary points at which f(a) or
f(b) ¥ 0. The asymptotic behaviar (3.34-35) implies that this

Gibbs phanomenon is asymptotically identical to that exhibited by

Fourier sine series provided we use the stretched independent variable

b
X = x(x-a)/w{a)/p(a) /[ /wis)/p(s) ds (3.36)
a

near x = a and a similarly stretched coordinate near x = b.

If f(a) = £(b) = 0, then a << 1l/n as n + «. jowever, a
further integration by parts in (3.31) shows that if the Sturm-
Liouville problem is nonsingular and if h(a) or h(b) % 0,
then a, behaves like l3 as n + ». In general, unless f(x)
satisfies an infinite nu;ber of very special conditions at x = a
and x = b, then &n decays algebraically as n»o.

These results on algebraic decay of errors in expansions

based on nonsingul r second-order eigenvalue problems generalize

to higher-order eigenvalue problems. For example, as n+e, the expansion

<o
coefficients in a_  in f£(x) = nzo a 6 (x), where {¢n(x)} are

the normalized 'heam' functions

¢;‘“' - Anon ’ @n(il) - Q;\(ﬁl) =0 ,
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behave like % if £(tl1) ¥ 0 (implying a Gibbs phenomenon at the

boundaries x = t1), like —12 if £(t1) = 0 but £'(tl) # 0 ,

n
like —15 if £(21) = £'(t1) = 0 but £''''(tl) # 0, and S on.
n

Sinqular Sturm-Liouville problems

If p(a) = 0 in (3.33) then it is not necessary to reguire that
¢|
f(a) = 0 to achieve a, << Tﬂ as n + o For this reason,
n
expansions based on eigenfunctions of a Sturm-Liouville problem that

is singular at x = a do not normally exhibit the Gibbs phenomenon
at x = a. Furthermore, if the argument that led to (3.33) can be
repeated on h(x) given by (3.32) [this is possible if p/w, p'/w,
and g/w are bounded and all derivatives of f are square integrable

with respect to w] then the boundary contribution to a, from
]

x = a 1is smaller than —% as n + o If there are alsc no
n

A
boundary contributions from x = b when the operations leading

to (3.33) are repeated indefinitely [which is true if p(b) = 0],
then a, decreases more rapidly than any power of iL- as n + »

n
The important conclusion is that the rate of convergence of

eigenfunction expansions based on Sturm-Liouville problems that are

singular at x = a and at x = b converge at a rate governed by

the smoothness of the function being expanded not by any special

boundary conditions satisfied by the function.

Fourier-Bessel serias

A Fourier-Bessel series of order 0 is obtained by choosing
the expansion functions to be the eigenfunctions of the singular

Sturm-Liouville problem

o d¢n
a;x J)_(— + AnXQn = 0 (0 < x < 1) (3.37)

on(l) = 0, °n(°’ finite,
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Therefore, p(x) = w(x) = x in (3.26) so the problem is singular

but nonsingular at x = 1. The eigenfunctions are

A

at x = 0,

o

Jon")

= {
¢n(x) JO‘

where Jo is the Bessel function of ordexr 0 and jon is its
2

nth zero, Jo(jon) = 0. The eigenvalues A satisfy

N = jon
v (n- )W (n+e)

fon

The Fourier-Bessel expansion of a function £(x) is given by

fix) = 21 a, I3 %) - (3.38a)
n=

The expansion coefficients a ~are given bv (3.30):

1l
a, = —2—y [ tE(B)I (i t)at, (3.38b)
T 7
Jo(Jon) 0
because
1 2 . 2
ftJo (jont) dt = iJO(Jon) .

0
For example, the Fourier-Bessel expansion of f(x) =1 |is

T 2 : ]
l = - z UM, S———— | (J x) (3__19)
n=l 3 |J5(35,) 0 on

In Fig. 3.6 we plot the 10, 20, and 40 term partial sums o7 the

series (3.39). There are three noteworthy features of this
plot:

fi) At x = 1 there is apparently a Gibbs phenoﬁenon. In
fact, it is easy to show that this Gibbs phenomenon has the same

structure as that for Fourier sine series:

-53- \

—



e < B it a2

-pG -

h 4

PR Rb R 1 A b e Al e kil 8 e e

‘0 Ie9an x 103

NA/T @1F1 pue u > x > (0 Jupdjyey3les x paxyj
103 N/T 9%31 89312A000 827138 2yl 38q1 IAI128qO
08TV °'T = X JIp2u uouawcuayd sqQqJ9 3yl 2A198qQ0
*SWAd] OY0Z‘OI=N 221Je paijedunii T uojinung
aYyl jo {9¢°¢) uojsuedxd 837128 [38L3F--13TIN0OJ

?y3j 3o swns Tepaaed ayy 3o 3oyd v 9°¢ 3811

—q-q<ﬂ—uq——<-<-<—---<-q-_—ﬁ-<-<-4ﬂ-ﬂjjq-qﬁw|—-<.q]-«-d«-<qd<1—wj-u- --«_q_<4j-<ﬂ--~dqq

-4

-

-

1

1 1 de

1

§°1

ke e Ay masemd et S




ke

N 2 nzj

-1 ——— 3,0 " —T) & Si2) (N+w)
n=1 JonTg 3on’ 0 en N+3

1 ?
!This behavior is not too surprising because Jo(z)m(Z/nz) cos (z-4m)
‘as z++~, so-the large n behavior of (3.39) can be asymptotically

approximated by that of Fourier series.

{ii) For fixed x satisfying 0 < x < 1, the error after

N+l terms of (3.39) is
N
, 1+ ] —2 _5,0G,0 =0 (N+=)
I n=0 jonJé(jon)

In fact, the nth term of (3.39) has magnitude of order 1/n
. . . 1 1
. and oscillates in sign roughly every min (;, I:;) terms. The
error in such an oscillating series is of order 1/N after N terms.
{(iii) At x = 0, the series converges (so there is no Gibbs
phenomenon there) but the convergence is very slow and oscillatory.

In fact, the error after N terms is of order (-1)N+1/Jﬁ .

This follows because

N o n N+l
1 + 2 2 o /-i- z (‘1) A, ('1‘ . (N-no)
n=0 j  J4(3,,) n=N+1 vn vV 2N

b e

(3.40)

This slow rate of convergence near x = 0 holds even though the
eigenvalue problem is singular at x = 0. There are two reasons

i for the slow convergence of Fourier-Bessel series near x=0. First,
+he Gibbs phenomenon at x = 1 affects the rate of convergence

) throughout 0 £ x S 1., 1In fact, this is the sole source of the

‘behavior (3.4C). However, when f'(x) # 0, slow couvergence near

d -55-
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x = 0 can also originate because p(x) = w(x) = x gives
p'/w = 1/x which is singular at x = ¢ so h(x) given by (3.32)

is singular at x = 0 if £'(0) % G.

Chebyshev series revisited

Chebyshev polyncmials are the eigenfunctions of the singu-

lar Sturm~Liouville problem (3.26) with p(x) = /1—x2,
Y 2

w(x) = 1//1-x° , q(x) =0, -1 3% x £ 1, and the boundary conditions

that ¢n(il) be finite. The eigenvalue corresponding to Tn(x) is

An = nz. Since p/w = l—x2 and p'/w = -x are both finite for
lxlsl, it follows that the argument leading from (3.30) to (3.33)
car. be repeated on h(x) given by (3.32) so long as f(x) is
sufficiently differentiable. Therefore, the Chebyshev series
expansion of an infinitely differentiable function cornverges
faster than any power of 1/n as n + «, as shown following (3.23)
by a diff erent method.

To illustrate the convergence properties of Chebyshev series

expansions, we study the rate of convergence of the series

sinM - (x+a) = 2 | E:LJn (Mr) sin(Mra+inm)T (x) x| £ 1

n=0 "n

(3.41)
Since J (M7) - 0 exponentially fast as n increases beyond Mm, it
follows that (3.41) starts converging very rapidly when more
than Mn" terms are inclydad (see Fig. 3.7). This result leads to
an heuristic rule for the resclution requirements o Chebyshev
expansions. Since sin Mm(x+a) has M complets wavelengths lying
within the interval |x| < 1, we arque that Chebyshev expansions

converge rapidly when at least m_polynomials are retained per

wavelength. 1In general, we expect that the Chebyshev expansion
of a function %hat oscillates over a distance ) converges rapidly

if 2n/) peiynomials are retained. Fewer polynomials are required

only (see below).

if the reqgion of rapid change of the function occurgAat the boundarxa
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Fig. 3.7. A plot of the Ly-error in the Chebyshev series expansion (3.38) of

sin{Mrx) truncated after TN(x) versus N/M. The various symbols represent:
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zero rapidiy when N/M > m.

OM - 40.
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The Chebyshev polynomial expansion of a function f(z)

that is analytic in a region of the complex-z plane that includes

the interval -1 < z <1 converges at least exponentially fast

as n + o If f(z) has sinjularities in the fini:e-z plane
then

Il/k

lim sup Iak
ko

(3.42)

o

where R is the sum of the semi-major and semi-minor axes of

the largest ellipse with foci at z = :1 within which f(z)

has no singularities. Thus, the Lz—error (3.29) after N terms of

the Chebyshev expansions decays to 0 roughly like R"N as N+,

To prove (3.42), we note that

2 Jl f(z)Tn(z)

a = = ~—  az
n Cn -3 ’1-22
-1/2 -n
- L[ £z a-2% (z+/2%-1)  a- (3.43)
"Ch Ic

where C is any contour that encircles the interval (-1,1)
just once and does not enclose singularities of f£(z).

~-n
Doy (z - vz -1) '

Eq. (3.43) follows because 2T (z' = (z + /z -1)"
where we choose the branch of J;I:I satisfying 2%-1 n 2z
as z + ® . Since (z + /2°-1)"+ 0 as z + = with this
choice of branch cut, we czn expand the contour C to infinity
by Cauchy's tl orem and pick up the contributions from the

singularitiez of £(2z). If the 'rearest' singularity is a pole

at z =z, with residue r (other singularities may be treated

similarly), then

(zg + ,;g_ 1) " (n + =) .

a A 21

O N

-~z



i|

i

v P b ey Y AT NG AN & A o Sorhme Y

4 b e s T o Y

To complete the justification of (3.42) we need only show

that Izo + /zg-ll = R . Recall that an =llipse with foci

at 1 satisfies xz/A2 + y2/B2 = ] with A

If z_ lies on this ellipse, then sotting

0

it follows that zo + /zg-l = (A+B)e

ie _ Re

2

Zo

is

- B " =1

2

= A cos 6 + iB sin 6 ,

Let us give ar example of the behavior (3.42).

f(z) = tanh (10 z) has poles at z =

R = 7/20 + A+ (1/20) 2 = 1.16934.

rin/20 .

Thus,

The function

The Chebyshev expansion

cOefficients of £(z) satisfyv a0 = 0 (because f(z) 1is an
odd function), while a, ¢ 1.2679, a, # - 0.4089, a. ¥ 0.2300,
and so on. The rms (L,) error ey [see (3.29)]

obtained by truncating the series for £f(z) after TN(z)
satisfies (eg/e )} # (1.179)% , e, /e o  (1.16935)% ,
demonetrating (3.42) for this case The error e is smaller

N

than 0.0l for N > 25, which again illustrates the result that

roughly « polynomials per 'wavalength' are required to resolve

a function; the function f(z) has a region of rapid change

near x = 0 of width roughly 0.1.

If f(z) 1is entire, R = o« in (3.42) so its Chebyshev

expansion coefficients decay faster than exponentially.

precisely, the method of steepest descents applied to (3.43) gives

the following result: if f£(z) is entire and

£(z) = 0(|z|B exp 12| a3z z + =,

lim sup(nja |)/(n2nn) =
n-+o

then

.1
a

cr example, sin Mw(z+a) is entire with a

Chebyshev coefficients in (3.41) sati

as n + o, in agreement with (3.44).

Chebyshev coefficients that satisfy (3.44) with
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Finally, we remark that the Chebyshev series expansion
(3.21-22) of an arbitrary function g(x) has a maximum
pointwise error that does not differ drastically from the
smallest possible maximum pointwise error of any Nth degree
polynomial, the so-called minimax error. 1In fact, the maximum

pointwise error of the Chebyshev series (3.21) truncated after

2 2nN) times larger than the minimax

TN(x) is at most 4(1 + 7w
2

error (Rivlin 1969). Since 4(1 + w ° nN) < 10 for
N < 2,688,000, the Chebyshev series is within a decimal place
of the minimax approximation for all such polyrnomial apprcxima-

tions.

Legendre series

Legendre polynomials are the eigenfunctions cof the singular
= 0,

-

Sturm-Licuville problem (3.26) with p(x) = l-x2, q(x)

wix) =1 for -1 5x 21 and the boundary conditions are

Ap = a(n+l) and its eigenfunction is ¢n{x) = Pn(x), the
. 2

Legendre polynomial of deyree n. <cince p/w =1 - x and

p'/w = -2x are hoth finite for |x| £ 1, it follows that the

Legendre series expansion of infinitely differentiable functions

converges faster than algebraically.

To illustrate the convergence properties of Legendre series,

we study the convergence of the series

sinMn(x+a) = .

VM n

e 8

’, b ] - : -
0‘2n+*)“n+%(M") sxn(M4a+§nn)Pn(x)
(3.45)

Since the expansion coefficients in (3.45) vanish rapidly as n

increases beyond Mn, we conclude that Legendre polynomial expansions
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o smooth functions converge rapidly provided that at least

1 polynomials are retained per wavelength. (see Fig. 3.8).

When a discontinuous function is expanded in lLegendre series,
the rate of convergence is no longer faster than algebraic. In
the neighbo.-hood of a discontinuity, a Gibbs phenomenon occurs
whose local structure is the same as that for Fourier series
with a suitable stretchinc of the coordinate. For example, the
Legendre series expansica of the sign function sgnx is

(-1)™ (4n+3) (2n) !

p (x)
0 22™1ins1)iny 2n+l

sgnx =
n

(3.46)

fl &=~ 8

The paxcial sums of this series are plotted in Fig. 3.9. Three

fcatures are noteworthy:

(i) The Gibbs phenomenon near x = 0 has the same structure
as that for Fourier series.

(ii) The error after N terms behaves like 1/N for |x]<1,
x $# 0. This follows from the fact that the (2n+l)st Legendre

coefficient. in (3.46) satisfies

a = (-1t Mo @)l o g L1, (n-ve) (3.47)
n 220+l iy in Iy
and the estimate
1
P_(x) = 0(—i-) (n + )
n n

for |x| <1; the series (3.46) is analtemating series if x

is fixed away from zero so the error after N terms is at most

1,2
of order anPn 0 (/"n') .
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Fig. 3.8. A plot of the Lz—error in the Leg:ndre series expansion (3.3%) of
sin(Mmx) truncated after PN(x) versus N/M. The various symbols represent:
OOM=10; xM=20; AM=30; OM = 40. Otserve that the L,~error approaches

zero rapidly when N/M > 7.
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(iii} The ~eries converyges only like 1//N at x = tl1. This

Follows from (3.47) because Pn(tl) = (il)n for all =a. Thus,
an interior Gibbs phenomenon in a Legendre series expansion has

a 'long-range' effect in the sense that it seriously affects the
rate of convergence at the endpoints x = *1 of the interval.

In contrast, the error of the Chebyshev expansion of sqn x
plotted in Fig. 3.5 decay like 1/N at x = tl1 . This behavior
is quite general; the houndary errors of lLegendre polynomial
expansions decay to zero roughly a factor /N slower than the

boundary errors of Chebyshev expansions.

The rate of convergence of Legendre expansions ot a general
function f(x) may pe estimated as for Chebyshev exparsions,
In particular, the results (3.,42) and (3.44) hold provideda that
f(x) satisfies the stated conditions and (3.23" holds with

only minor modifications.

Resolution of thin boundary layers

Legendre and Chebyshev pnlynomial expansions give an
exceedingly good representaticn of functions that undergo rapid
changes in narrcw boundary layers. Consider the sequence of
functions 96(X) = f(x) expl(x-1)/8' as 6+0 with Re§>0 for
a fixed smooth function f(x). As 6+0, gG(x) develops a
bouvndary layer of width 6 near x=1. It may easily be shown

that th2 Chebyshev expansicn coefficients of ga(x‘ satisfy
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a, - (26/m1/2 £(1)eT " 8 (new ; snZ=0(1)) (3.48)

provided that Re §>9, Thus, if N polynomials are retained,

the rms error ¢ in the Chebyshev expansion of gé(x) satisfies
1 2
tnc.- 3 (Re§)IN (N+w) (3.49)

The result (3.49) implies that as §+0, the number of
poiynomizls required to reach a specified error bound increases
only as 1i,//§, in contras:t to a uniform grid rcpresentation of
ga(x) that would require order 1/§ grid points in the interval
[xlil. In fact, to achieve 1% maximum pointwise error in boundary
layers of thickness § at the ends of the interval -l<x<1l, it

is necessary to ratain only
N-3//Re § (3.50)

polynomials as 5-+0.

Heuristicaliv, the reason that Chebyshev expansions represent

cur
Tn(x) occu

toundary layers so well is that the extrema of
2

2
= cosmj/n for }0,1,...,n. SinCe X, =X;~ T°/2n and

at x. =

] .

x l—xn--ﬂ2/2n2 as n-+» , it follows that these polynomials can
n—

resolve changes over distances of order

n
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The convergence properties of Legendre polynomial expansiong

of boundary-layer functions are similar to those of Chebyshev
expansions. In particular, (3.49) and (3.50) are both still
valid. In Fig. 3.10 we compare the spatial distribution of the
errors in Chebyshev and Legendre polynomial expansions of ‘he

function g(x) = 100 (x-1)

, Wwhich has a narrow boundary layer
of width 1/100 near x=1. Apparently for x away from the
boundaries x=:1, the Legendre expansion has somewhat smaller
errors, while near x=:l1 the Chebyshev expansion has smaller
errors.

The Legendre expansion gives the polynomial QN(x) of

degree N that minimizes

1l
[ lgtx) - QN(x)}zdx

while the Chebyshev expansion gives that QN that minimizes

1
[ lgx) - QN(x)|2 (1-x2)"1/2

dx

The Chebyshev expansion also gives a smaller maximum error
max |g(x) - QN(x)I
| %<1

than the Legendre expansion by roughly a factor 2/ ;
as remarked above, the Chebyshev QN(x) is usually remarkably

close to the minimax polynomial that minimizes the maximum

error.
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Laguerre polynomials are the eigenfunctions of (3.26) with

X X

p(x) = xe ©, q(x) =0, w(x) =e  for 0 < x < « with

th eigenvalue is

-xX
e 2 ¢n(x! boundea at x = 0 and =, The n
An = n and the associzted =igenfunction is ¢ (x) = L (x),

the iaguerre polynomial of degree n. If f£(x) and all its

derivatives are smooth and satisfy

£(x) = 0(e®™) (x + ®)

for some o < %, it is easy to show by retracirg the derivation

of (3.33) from (3.30) that the Legendre expansion

£(x) = | a L (x)

n=(

converges faster than algebraically as the number of terms N » .

4

To illustrate the cate of convergence of Laguerre series,

we consider the expansion of sinx:

: s 1 s
sinx = 7} = COS —(n+1)]L (x) 3.51
L, S@72 [4 n (3.51)
which converges for all x, O S x < », Since

L, (x) ~ 7% esxx_*n_% cos[2v/nx -31] ,
v

[see Erdelyi et al 1953, Vol. II, pg. 30] it follows that if

N > > x, then the error a2fter N terms at x is roughly

eix
M7 ()}
This erro, is small only if N&n 2 > x or N 2 1.44x. Since

the wavelergth of sinx 1is 27 , Laguerre expansfions require

, approximateiy 9.06 polynomials per wavelergth tc achieve high
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accuracy. (This figure may be reduced to about 6.53 polynomials
per wavelength by using the modified Layur.rre expansion

) anLn(x)enax and ootimizing the choice of a.) Thus, Laguerre
expansions require many more terms tc resolve a function of given
complexity than do either Chebyshev or Legendre expansions. The
reason is that significant weight is given to x + + » in the
Laguerre series where sinx bhas an essential singularity.

ih Figs. 3.11-13, we plot the partial sums of (3.51) with
N = 10, 20, and 40 terms. Observe that the number of wavelengths

of sin X represented accurately by (3.51) is roughly N/9.

Hermite expansions

2

Hermi te polynomiais satisfy (3.26) with p = e X , gqix) = 0,

2 142
wix) = e X for - o< x < =, o, (x)e 2" pounded as [x]| » =.
The Hermite polynomial Hn(x) of degree n 1is associated with

the eigenvalue An = 2n. If £(x) and all its derivatives satisfy

2
£(x) = 0(e**) ([x] » =)

‘or some o < %, then the Hermite exparsion

f(x) = Z aan(x)
n=J

converges faster than algzbraically as the number of terms N -+ o,

This is proved by retracing the steps leading from (3.20) to (2.33).

To study the rate of convergence of Hermite series, we consider

the expansion of sinx:

Hy o, (x) (3.52)
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Since the asymptotic behavior of Hn(x) is given by [Erdelyi,

et. al 1953, vol. II, pg. 201]

2
$x ni - - AnT
Hn Ix) ~ e Tm—! cos («in 1 x &nm)

as n » » for x fixed, it follows that the error after N

> x2

terms of (3.52) goes to zero rapidly at x only if N < Tog x
This result is very bad; to resolve M waveleng*hs of sinx
requires nearly Mz Hermite polynomials! [By expanding iu the

2
ax

series | a H (x)e” and optimizing the choice of a, it is

possible to reduce the number of required Hermite polynomials to

about %1r %.7.85 per wavelength, but this is still quite poor.]
Because of the poor resolution properties of Laguerre and

Hermite polynomials the authors doubt they will be of much prac-

tical value in applications of spectral methods.
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4. Review of Convergence Theory

The fundamental problem of the numerical znalysis of
initial value problems is to find conditions under which
uN(x,t) converges to u(x,tj] as N + » for soue time in-
terval 0 < t < T and to estimate the error |ju - uNH .

The principal result is the Lax- Richtmyer equivalence theorem

which states that stability is equivalent to convergence for
consistent approximations to well-posed linear problems. The
terms stable, convergent, and consistent relate to technical

properties of the approximation scheme which are defined below.

An approximation schere (2.5-6) is stable if

Lyt
lle ™ || < x(t) (4.1)

for all N where K(t) is a finite function of t . Here

the operator norm is defined by

Lyt eLNt
e ¥ || = max Ale ~ull
uey all

An approximation scl.eme is convergent if
la(t) - uN(t)H + 0 as N +» o

for all t in the interval 0 <t < T and all u(0)e/ and

£(t) ef. Finally, an approximation scheme is consistent if
[[Lu = Lguil » 0
(4.2)
- puif *
la - 2if * o
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U as N -+ = for all u in a dense subspace of Af .

The classical Lax-Richtmyer equivalence theorem relating
the above definition states that "a cons.stent approximation to
a well-posed linear problem is stable if and only if it is
convergent.” In this monograph we are confronted with some
subtleties regarding the notions of stability and convergence.
Because a precise understanding of the ideas of stability and
convergence is important to the theory of algebraic stability
given in Sec. 5, we outline here the proof of the equivalence
theorem.

Proof of the Eguivalence Theorem

To show that stability implies convergence we use (2.1) and

(2.5) to obtain

8‘““\1“)

3T = LN(u-uN) + Lu - LNu + f - fN .

Thus,

Lyt
u(t) - “N(t) = e [u(O)-uN(O)]

t Ly(t-s) ‘
+ 4) e [Lu(s)-Lgu(s)+f(s)-£f, (s)] ds, (4.3

d Using (4.1) and (4.3) and the triangle inequality we obtain the
estimate

lu(e)-ug(t) || < K(t)[[u(0)~uy(0) I

t
+ ] R(e-s) [1Luts)-Lus) || + ll£(s)1-£ () |l] as

(4.4)

Thus, if u(t) belongs to the dense subspace of X satisfying
(4.2) and if f£(t) belongs to the dense subspace of ) satisfy-

( ing ||f - PNfH + 0 as N+ ® , then |lu(t) - uN(t)H + 0
—75_
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ag N » = Since all solutions wu(t) of (2.1) can be
approximated arbitrarily well by functions satisfying (4.2),
the proof that stability implies convergence is completed.
Conversely, to show that convergence implies stability,
we first observe that, for any uem, HeLNtuH is bounded
for all N and each fixed ¢t . In fact, convergence implies

L.t L.t
0 < |lleMull - le¥® )| < NeNu-ef) » 00 (N

while well-posedness requires that l]eLtvfr is finite. How-
ever, maxHeLNtuH may depend on u é&nd on t , so stability
is not yet proved. To complete the proof we use the fact that
}( is a Hilbert space. The principle of unifgr@ boundedness

(Richtmyer & Morton 1967) implies that if ||e N u|| is bounded

L.t
as N+« for each t and ueM then ||c ¥ || is bounded as

N + » for each t . This proves stability and completes the
proof of the eguivalence thecorem.

Using the equivalence theorem, the study of the ccnvergence
of discrete approximations to the solutions of initial-value problems
is reduced to the study of the stability of the discrete approxima-
tions, assuming the approximations are consistent. Thus, the de-
velopment of conditions for the stability of families of finite-
dimensional operators LN is of primary interest in numerical
analysis.

Von Neumann Stability .ondition

The simplest conditinn for stability is due to von Neumann.
Let us suppose that the Hilbert space M possesses the inner product
(.) . Using the inner product, we Geiine (neglecting the compli-

*
cations due to boundary ccaditions) the adjoint L of ar. operator

L as that linear operator that satisfies
-76_
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(u,Lv) = (L w,v) for all y,v in kf . For the finite dimen-
gional approximation LN' the matrix representation of L; is
the adjoint of the matrix representation of LN {see Sec. 2).
Tha operator LN is said to be a normal operator if LN cu.anutes
with L; so LNL; = L;LN .

The von Neumann stability condition is that stabillity of

normal operators LN is equivalent to the cnondition

Re AN < C (4.7)

where Ay is any of the eigenvalues of any of the operators

LU and C is a finite constant independent of N . To prove
*®
this, we note that if LN is normal, then LN and LN as
*
well as exp(LNt) and exp(LNt) are simultaneously diag-

nolizable. Therefore,

*
L.t L.t
||eLNtI|2 = max LU NeNu =  max eZ(ReAN)t
ued (u,u) A

R

where XN are the esigenvalues of LN . Thus, the von Neumann

condition (4.7) is equivalent to the stability definition (4.1)
with K(t) = exp.2Ct) .

The von Neumann condition gives an operational technique
for checking stability of normal approximations: compute the
eigervalues of LN and check that the real parts of the eigen-

values are bounded from above.

Examole 4.1: Symmetric hyperbolic system with periodic
boundary conditions

Let us apply the theory just discussed to the stability

of difference approximations to the m-component syimetric

hyperbolic systen

(x,t su(x,t)
—-(—a—;:!——)- = A ——'5?-— (4.8)

-77-
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with periodic boundary conditiong 4(0,t) = G(L,t) -
Here u is an m-component vector and A is a symmetric
m ¥ m matrix.

If we discretize in space using second-crder centzred

differences, we obtain

ou. u. - u,
3 - a3 j-1 (5 = 142,...,8) (4.9)

ot 2Ax

uo(t) = uN(t) ' ul(t‘ * “N+l(t)

where uk(t) = u(k/N,t) and A4x = 1/N . The system (4.9)
is equivalent to the system of mN equaticns

3t . - 10-
Yl B u (4.10a)

where u is the columr vector whose transpose is

A

uT = (31'32""§N)‘ Here B is the mN x mN matrix given
by the Kronecker product

R = A @D , (4.10Db)

whexre A is the m x m matrix in (4.8) and D is the

4 x N matrix

0 1 0 0 ...0-1
-1 0 1 O0...0 ©
0-1 0 1...06 0
—l- « e a e s e
D = & ..
0 ¢ 0 O J
1 0 0 O -1 0/ .

*
D is anti-symnnetric (so D = -D and, hence, D is

normal' so it has eigenvalues that are either € or pure

—'78.-
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i sin(2niAx)/Ax for k=0,1,...,N-1. Thus, the norm

of eaxp(Bt) satisfies

lexp(Bt) || = max |[lexp(iA sin(2rkex)t/8x|| = 1,
0<k<N

where we use the fact that A is symmatric so it has real

eigenvalues.

Kreius Matrix Theo~ =

1f the approximate evolution operators L, are not normal,
conditions graranteeing stability are much harder o obteain.
The von Neumann condition (4.7) is still necessary for

stability (why?), but it is not sufficient to ensure stability.

Ore important case in which stability conditions can be found
is for the problem studied in Example 4.1 with A no longer

symmetiic. The appropriate generalization is to assume that the

approximation Ly haz the form Ly = A @UN where A is a fixed

r x m matrix (pcssibly not nermal) and D is an N-dimensional

N
normal matrix. It is easy to show that

lexp(L t)!] = max |lex; (x Au) || (4.11)
N A N

3
'™

where AN is any of the cigenvalues of DN .. A stability

cordition for (4.11) will be obtained belnw., To do this, we
generzlize (4.11) and seek conditions for the stability of a family
of mxm matrices A(w) , where w {s an arbitrary parameter.
Thac is, we seek conditions such that

max |lexp[A{wit])]] < K(t) .
[\

where K(t) is a finite function of t. Once these general

conditions are found, they can be specialized tu give stabiiicy

conditions for families of the form exp(LNt) where LN-A°D§ with

-0~
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DN normal by simply choosing A(w) = Aw where w is any of
the eigenvalues of any of the matrices DN .

The basic result on the stability of families of m x m
matrices is the Kreiss matrix theorem (Kreiss 1962):

For any family A(w) of m x m matrices, each of

the following statements implies the next:

(1) There exist symmetric matrices H{w) satisfying
H(w)A(w) + A*(w)H(w) < O and

I < H{w , ||HW)]] & € for some constant C .
(ii) lexp[A(w)t]]] < C for all t 2 0 .
tiii) (Re M) || (AI-a(w)"Y|| < ¢' for some constant C'

and all 2\ satisfying Re A > 0 .,

(iv) There exist matrices H{w) satisfying (i) with
lH(w)]] ¢ K(m)C' where C' 1is the constant
appearing in (iii) and K(m) devpends only on
m and not only the family A(w) .

Observe that for a family of matrices A(w) to satisfy
the conditions of this theorem it is necessary that all the
eigenvalues of all the matrices have non-positive real parts.
Otherwise there would be some « and some eigenvector U satis-
fying |lexp[A(w)t)u|] » = as t + o violating (ii).

The most important relation implied by tinis theorem is the
implication that (iii) implies (ii) with C 2 K(m)C' That is,
for any m x m matrix A all of whose eigenvalues have nonposi-

tive real parts

|lexp(At) || < K'(m) max (Re A) || (A1 A)'l!i (4.12)
Re A > 0
where K'(m) 1is a finite functior of m
An elementary proof of (4.12) has recently been given

oy Laptev (1975} and improved by C. McCarthy (private communica-

tion to . Sirang, 1975). Lapfev observes that if v ~ 0 , tnen

-80~
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Vtie vt ™ .
At - 1 At - -1 = e 1ut Sv-A] -4 4.1
e VTEk !v-in e " (AI-R) dx e Ty I-ae (v+iv-aj du , (4.13)

as may be proved by shifting contours in the complex plane.

Since each entry ouf (v+iu-A)-l is a rational function in

of degree at most m , the derivatives of the real and imaginary

parts of each entry can change sign at nodst 4m *imes when

On any u-interval, say a < u <b,
1

increasas frcm -~ to o

where the real and imaginary parts of an entry in (v+iu-A)

are mo  .tonic, the second mean-value theorem implies

Jb cos ut £(u) du f(a)[éin(ct} - sin(at)] + £(p) [3in(bt) - sin(ct)]
a : t L t

< % max|{{u)| ,
- U

for some c satisfying a<c<b where f(u) is the real or
imaginary part of an entry in the matrix (v+iu-A)—l. If we apply
this kind of inequality to the right side of (4.11), it follows

that for all 4i,j

64 m

£ Y . (4.14)

. -1
+iu-Aa) ..
3 mﬁx (v+iy A)1J

m .
J e"t (v+in-a) Tt qu
-0 1

If it ie true that the matrix norm has the property that

!Bijl < Cjy for all i,j implies lIB]| < ]lcli + then (4.14)
implies

e iut . -1 ' 64 m ' -1

lj;ze y+ip=-A) du < T mﬁx (v+ip-A) { (4.15)
iy l ¢

Choosing v = 1/t in (4.13-15) gives (4.12) witl. K'(m) = 64 m .
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There are three important matrix norms in which
|Bij| < €y for all i,j implies ||B]| < |iclj, namely
the matrix norms induced by the Ll' L2, and L vector

norms. This is shown using the relaticns

m
B = T |B..
Weil,y max I 18551,
m m
IBll, = sup T § B,.x.¥Y;
2 Jixilp=1 i=1g=x BT
”Y”zzl
m
B = X B..
loll, = nex 38l
which held for all matrices B . In other norms iBij! < Cy5
may not imply |[|B|| < lic|| but %the equivalence of all matrix norms

implies |IB || < F(m) {|C|| for some finite function of the
dimension m. 'Thus, (4.12) is obtained with K'(m) = 64mF (m) .
The functions K(m) appearing in statement (iv} of che
Kreiss theorem and K'(m) appearing in (4.12) nead not be equal.
It follows from the Kreiss “hecrem that K'(m) < K(m) . Kreiss
showed only that Ki(m) = om") as m~+ ® ; this is much too
conservative. Miller & Strang (1965) showed that K(m) = O(Cm)
as n + o for some constant C > 1 .
In the case of a normal family of matrices A(w) the con-
ditions of the Kreiss matrix theorem are trivially satisfied:
if the eigenvalues of A(w) have negative real parts then

lexp[A(w)t)}] < 1 for all t >0 and w .

~-32-



Non-Normal Approximations

The Kreiss matrix theurem applies to approximations of the
form Ly = A@Dy, where A is a fixed dimensional non-normal
matrix and DN is an N-dimensicnal normal matrix. This type
of operator Ly is cciumonly eacountered in the solution
S of initial-value preblems with periodic bcundary conditions.

On the vther hand, non-periodic boundary conditions usually lead
to problems in which the non~normality affects the N-dependent
operator DN‘ Wher finite-difference methods are used for such

problems, the deviation of Dy from a normal operator is frequently

‘small’

Non-rormality of a difference approximation to a mixed

initial-boundary value problem
A difference approximation to the mixed initial-boundary

Example 4.2:

value problem

€y

! u u o _
f %E + %_ = f(x,t) (0gxl, t>0%

H]

]
o

< u(0,t)

g (x)

: u{x,0)

o~ is given by

: Ju,  u.,.-u.
; TP .2 S ol PP << 4.16
; =t * 255 £(3h,t) (1232N) (4.16)

N where uj(t) = u(ih,t) and we set u,(t) =0 and wug,,(t) = 2uy(t)
. “UN_l(t). The latter condition is an aextrapclation condition
§ which ensures that (4.16) is a closed system of equaticns. This

approximation has the matrix representation

W' ¥R

¥,



+
e

The departure of LN from a normal matrix is a matrix of
rank 1 in the lower right-hand corner. For problems of this
kind, extensions of von Neumann stability analysis, like that
introduced by Goduncv & Ryabenkii (196 3) and extended by
Kreiss {see Kreiss & Oliger 1973), apply.

Unfortunate ly, the class of semi-discrete approximations
investigated in this monograph include problems that cannot be
easily analyzed either by straightforward von Neumann stability
analysis or by the Godunov-Rysb2nkii or Kreiss analysis.

In contrast to the classical problems of the numerical analysis
of difference methods for initial-value problems, spectral

approximations LN are freguently not even approximately normal.
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5. Algebraic Stability

In this section, w. develop a theory of stability and
convergence which generalizes the classical theory discussed
in Sec. 4. As will be shown by examples in Sacts. ¢-g8, this
caneralized stability theory is well suited to study the con-
vergence of spectral methods.

A spectral approximation

— = Lou_ 4 fN (5.1)

to the initial-value problem v, = Lu+ £ is called

algebraically stable as N + if

||eLNt|| < N°NSEk(t) (5.2)
for all sufficiently large N , where r, s, and K(t)
are finite for 0st<gT.

It may at rirst seem that the Lax-Richtmyer theorem shows
that algebraically stable arvroximations cannot be convergent
unless (5.2) holds with r <0, s<0. In fact, if we
demand that the approximations converge for all u(0) and
f(t) in the Hilbert space », this conclusiox is correct.
However, it is possible for approximations chat satisfy (5.2)
with r » 0 or s >0 to converge on a dense subset of
the Hilbert space in which the only functions for which con-
vergence is not obtained are highly patholngical. 1In fact, if

p=r+ 8T >0 but p is smaller than the order of the
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spatial truncation error of a particular solution u(x,t) , i.e.

N |lLuter - nute)|l > 0 (N + w) (5.3a)
8 luo) - ugto)f| -+ o (N + =) (5.3b)
NP "e(e) - A C N (N + ) (5.3c)

for all 0<tsT, then (4.4) and (5.2) imply that
felt) - u(0)j] + 0 (N + )

for 0 <t

A

T . Thus, algebraic stabil.ty implies con-

- vergence in that subspace of N satisfying the conditions

_% (5.3). If this latter subspace is large enough, an algebraic
‘ ally stuble method can still be very useful although it cannot
yield converger.t results for all inivial conditions u(0) and
forces £(t) . Since spectral methods are normally infinite-

order accurate, algebraic stability implies convergence for

——— -

such spectral methnds.

ﬁ In the examples of algebraic stability given in Sects. 7-9,

we find r < % . s <0, and K(t) <M. In this case,

algebraic stability implies convergence sc long az (5.3) nolds

Jith P < % . Thus, the approximation need not be infirite-

PR
L I

order accurate to achieve convergence. Howaver, we develop the
general theory of algebraic stability here in the expectation
- that it will find application to spectral methods for high-order

equations in which p may be arge.

=86~
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Our definition of algebraic stability is very similar
to the notion of s-stability introduced by Strang (1.960).
However, our motivaiion is slightly different. Strang intro-
duced s-stabilitv to study the convergence of time-discretized
initial-value problems in which the norm of the e@volution

operator grows as a power of the time step. ¥#. shall return

=,

to this concept when we discuss generalized stability in Sec. 9. i

Let us give an illustration of the need for a theory of
algebraic stability. 1In Sec. 8, we will discuss Chebyshev
polynomial spectral methods to solve the one-dimensionail
wave equation u +u, = f(x,t) with boundary conditions
ui-1l,t) =0 . Unfortunately this problem is not well posed
in the Chebyshev norm

1,
|l = uwix;  4x .

LA

In fact, if
1 - x| if x| < ¢

u(x,0) =
0 if |x| 2 €
then the solution of u, + u = 0, u(-1,t) = 0 at t =1 is given
by
1 -L4x 1-€ < x ¢ 1
€ € ’ -
u(x,l) =
0 X £ 1l-¢

oy g
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Therefore, as e + 0+ ,

lutz, 0|2 ~ (e + 04)
2 Y ]
’ ’
lu(x,||° ~ 3 /Z¢ (e + 0+)
. _ ]
so that if L =- 3% !
H Il % -3
L lu(x, DIl . (8 3 .

He™[] =x TTET;TUHT v (9) € (¢ + 0+) (5.4)

In fact, ﬁe“t|| = for 0 <t<2, ||eLt“ = 0

for © > 2, so the one-dimensional wave equation is not
weli posed in the Chebyshev norm.

Since the finite-dimensional approximaticns Ly to L
given by Galerkin, tau, and co’location approximation (see

Sec. 2) should converge as N + o , it follows that we may

expect
lexp@yt) |+ =

as N + o in the Chebyshev norm. To estimate the rate of
divergence of Hexp(LNt)H as N + @ we argue that

Chebvshev polynomia.s of d=gree at most N ¢an resolve dis-
tances of at most order 1/N interior to (=1,1) SO we

may reasonably guess on the basis of (5.4) with € = 1/N that

1
llexp (LB = O(N a-) (N + ) , (5.5)

This result is justified by the numerical results presented

ir Table 8.3. Eg. (5.5) implies that Chebyshev-spectral approximations
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tc the one-dimensional wave equation are riot stable but are
algebraically stable with r =1/4 and s =0 in (5.2).
Notice that algebraic stability in one norm implies
algebraic stability in all algebraically equivalent ncrms.
Thus, algebraic stability is equivalent in all of the Lp
norms 1 < p <« because these norms are algebraically
equivalent in N-dimensional vector spaces (i.e., they differ
from each other only by a fixed power of N ). To show this,
we recall that the Lp norm of a vector a = (al,...,aN)
is defined by
1/p

N
Nall. = | £ |a,|P
p j=1 %

1f q = pa with 0<ocx<x1l, then

] N af N l-a
1-
||a||g = |z |a |F® «(): la.|P .211 = ||a||g N1-9/pP

by Holder's inequality. Therefore, for all p > 1 ,

1
5-1

¥ flall < lall,
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Also, if p>1l, then

. P
N N
IIaIlg = ¢ |a, % <[ lail\ = llallf .
i=1 i=1 )
so that
%-'1
N lall; < Hall, < dlal; - (5.6)

The verification of algebraic stability for spectrai
methods leads to a general problem in matrix theory. Suppose
that AN(N=1,2,...,) is a one parameter family of matrices.
We will find conditions on the members of the family such that
exp (ANt) is algebraically stable. We will use orly the L,

ncrm since the others are equivalent to it.

Conditions for Algebraic Stability

Let {AN} be a family of N x N matrices where
“AN|| = o(N%) (N + =) for some finite a . A necessary

and sufficient condition for algebraic stability

r..t .
lle ¥ || = O(NrNSt) N+ ®)
is that there exist a family {Hg} of~ ian positive-

definite matrices such that
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-1 b , .
la" il liagll = o) (N + ) (5.7a)
Y .
: HAy + Ay < c(N):! (5.7b)
¢
c(N) < d log N (5.7¢)

i for all sufficiently large N where b and d are finite

numbers independent of N .

71 To prove asusiic. Cy we use the Lie feormula
n
r\
L(CDIE Lim (eCt/n eDt/n) (5.8)
i ne ,
3

which is val:d for arbitrary matrices C and D . This

formula is proved at the end of this section. If we define

%
| ’- '}r -3 '%‘ * %’
X 1 o 2
: c =3 LHN Ay + Hy Ay Hy ])
K (5.9)
| ST S S
l *
D = ’Z[“N Ay - Hg o Ay Hy
and note that
SRR
. exp [ANt] = HN exp [HN ANHN tJ H'™

-9]1-
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it follows fro. . Lie formula that

. 1
t - n
SN i Hy H (eCt/“ e"t/“> HNI. (5.10)

nN->o

However, it follows from (5.7b) that, since C is &

symmetric matrix.

< ect/n

1e=%/7)

Also, D is ar antisymmetric matiix so that

F 4
TS I
Therefore, (5.10) gives
ct
e
prov . algebraic stability.

In order to prove that the cond:itions (5.7) are also

necessary lor algebraic stability we define
- - 1
By AN (r+l1l) log(N)I .

Therefore,

-y

- gy

o n e —

< Lw,
s i Bt

-92-~
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By Liapounov's theorem (Barnett & Storey 1974) there exists

a Hermitian positive-definite matrix Hy such that

"
|
—

*
HB.+ B_H (5.11)

N N N N '

Thus,

-1 + 2(r+l) log N Hy < c(N)HN,

ey + AN*HN

where c(N) = 2(r+l) log N . In order to ccmplete the

proof of (5.7) we need to estimate the norms of Hy and

HN- . It can be easily verified that an explicit formula
for HN is
8. t B*t
o ]
HN = J e N e N dat .
0
Therefore,
[‘” B .t Bt ®
: -2 2
nnNusJ le ¥l e ™ | at < w*S | Nt ar ¢ n%f
0 0

if 2 &nN > 1, i.e., N>2., Also from (5.11) we obtain

_9 3—
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so that

or

< 2iByll = o (N + o) (5.12)

This completes the proof of the necessity of (5.7).

The condition for algebraic stability given in (5.7)
implies that for every algebraically stable problem, there is

a new norm induced by the Liapounov matrices HN which is

e mallalatoL T

algebraically equivalent to the original norm and in which

the problem is stable in the classical sense.

The above result gives a method for checking numerically
the algebraic stability of a family {AN} of matrices satis-

fying ||Agll = o(N%) as N+ = :

P h‘.‘.-aﬁéq,&.. 25~ SO RN -

f (i) We check that the real parts of the eigenvalues

} of AN are bounded from above by s log N ;

otherwise, the family of matrices AN are alge-

braically unstable.

(ii) We introduce BN = AN - (s+1)log(N)I and

compute the Liapounov matrix HN such that

*
HNBN + BN HN = =-I . There are several numeri-

cally efficient techniques to compute Hy

(Bartels & Stewart 1972).
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D e e L UV UPU

- S < .
st Bnceatld @ o

) 3 e
P R 2 5. M

(iil) To verify alyebraic stability the condition number
of HN must be bounded by Nb for some finite b
as N+ & Noting (5.12), it is only necessary
to verify that the eigenvalues of Hy are bounded

from above by some finite power of N as N+ o,

This procedure is applied in Sects. 7-8 to verify algebraic
stability of model problems. Since (5.7) gives a necessary
and sufficient condition for algebraic stabili~y, if these

conditions dco not hold the family of matrices AN is alge-

braically unstable.

Proof of the Liemgormula

To prove the Lie formula (5.8) for finite dimensional

matrices, we use the identity

c | (C:D_ c o
eL+D - enen = le\ D _ enen
J
n=-1 (C+D ( C+D ¢ [l) [g Q]"-l—k
n n nn n_n
= I Qe e - ¢ e e e
k=0
c py" n- ctp CD
+ >
||°C D _ (enor ) T ; ol C+D | Ile 1 _ enenll
k=C
n-1-k
Al “
x(pntn ' non>
b c¢b

<nlle ™ - &M expl(]lc) I+ 0] (1-1/m)].
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On the other hand,

C+D ch
le ™ - efe”| o lR-BCll 0(—13) (n + =)
2n
n
so that
cCDy\"
1S - (e“en) < 3 (n » =)

for any K > %HCD—DCH , proving (5.8).

Eq. (5.8) is also true for certain infinite dimensional
matrices (operators). This deep result known as the Trotter
product formula 1is very useful in the modern theory of

partial differential eguations.
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6. Spectral Methods Using Fourier Series

Fourier series are appropriate to solve problems
with periodic boundary conditions. With periodic boundary
conditions, a stable spectral method based on Fourier series
is usually accurate and efficient. On the other hand, when
Fourier series are used to solve non-periodic problems
(including problers havine period.c initial conditions
but whose evolution operators violate periodicity),
stability is not enough to ensure convergence to the true
solution of the problem. An example of the latter effect
was given in Example 1.3. In this section, we investigate
the stability and convergence of spectral methods based on

Fourier series.

Example 6.1: Constant-~coefficient hyperbolic equation with
periodic boundary conditicns

consider the one dimensional wave equation

u, +u_ =0 (0 « x < 1) (6.1)

u(x,0) = £(x)

with periodic boundary conditions

U(o;t) = u(lrt) .

- - . i -97-
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Since collocacion, Galerkin and tau wnethods are identical in
the absence of essential boundery conditions (see Sec. 2),
let us analyte the Fourier-collocation or pseudospoctral
method. We introduce the collocation points

X, = n/20 (n = 0,...,2N~-1) and the vector notation

u '(uo""'uZN-l) where u, - u(xn) . The collocation

equations that approximate (6.1) can be written as

— = SR 2
‘5t L D L v ’ (bua-)

where ¢ and D are 2N > 2N matrices whoge ontriasg are

Cop ™ o expi-2ni(k-N)x,], (6.3a)
V2N
Dk\‘ = =211 k' er , (6. 3b)

where k' = A-N (1 ~ k ~ 2N-1) and k' =0 if k = 0 , A
simple derivation of (6.2) is obtained oy observing that

Cu giresc the Fourier coefficients of the collocation projection
Pu of u(x) . Thus, DCU are the Fourier coefficients of

R . -1 . . . .
- 5x Fu and, finally, ¢ DCu gives the collocation projection

-98~-



of - J% Pu which is - P ‘i Pfu. The matrix C ia a unitary
R R

matrix so C* = C—l, and the matrix D is skew-Hermitian so

D* = - D. Therefore, C-lnC is skew-Hermitian £0 that

1

lexpl{C™'D CIt]] =1 (6.4)

This proves that the Fourier-collocation method is stable for
(6.1). The results of this example can be generalized to a
general system of constant coefficient hyperbolic equations.

Example 6.2: Variable-coefficient hypsrbolic equation with
periodic boundary conditions

Consider the system of equaticns

u, + A(x)u‘ = ( 0 ~ x~ 1

with periodic boundary conditions u(0,t) = u(l,t) and periodic
inhomogenity : A(x) = A(x+1l}) for all x . Here u(x) Iis
% vector of m components and A(X) is an m X m matrix.

Tf we assume that A(x) is a symmetric mattix and that

\\ ~
A wl (6.5)
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for some finite a , then the Fourier-Galerkin method is

stable. To show this, we denote by Uy the N-term [ourier-
Galerkin approximation of u. Then using integration by parts

we obtain

1 1

4 f ut udx = u*(A+A.) u . dx <2a ' u*u dx
dt N N N X N - NN
0 0 0
Therefore,
1 1
* _ . 2at ®
f uy (x,t)ug(x, tydx < é f uy (x,0)ug(x,0)dx
0 0

which proves stability.
Condition (6.5) is not sufficient to ensure stability for

the collocation method. Consider the scalar equation (m = 1)

ut = r(x)ux 0

|~
%

1A
Pt

(6.6)
u(o,t) = u(l,t)

If we impose the additional restriction that r(x) 1is non-zero
wi 1in 0 - x < 1, then we can prove that the collocation
is stable. We must show that exp(RC*DCt)is stable where C and

D are given by (6.3) and R is the matrix with entries

L. = , S .. .
le rx;) Y i3

The matrix R L can be identified as the Liapounov matrix Hy

invoked in (5.7) and, therefore, the method is stable:



2% et

Y
IIREE

R™ ! (kcoDC) + (C*D*cR*) R! = 0.

In fact, following the proof of the main result in Sec. 5,

lexp(Re'oct) || 2 < IRIIIRTY| « max  |r(x)|/min |r(x}|,
Oxx+1 O0<x+1

proving stability for N + =
If r(x) hae a zero within 0«x<1l, collocation with Fourier

series may lead to instability. For example, if N = 2, the

[ ]
eigenvalues of RC DC are 0,0, *“;(r0+r2)(r1+r3) where r, = r(xi),
s0 there are growing moldes if (r0+r,)(rl+r3) < 0. In some cases,
these modes may have large growth rates. One way

to limit the growth rate of these modes &8 ke rewrite

(6.6) as

5 X w0 (6.7)

u, + % (r(x)u)x + % r(x)ux - %

Now Fourier-collocation gives the matrix equation

- ® ® >
uy + (% DCR + NRC DC - Q)u = 0

_ -1l01-
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where 0)@ 5T (xk)‘kc . The first two matrices on the
right side add up to a skew-Hermitian matrix. 7" if (6.5)
holds for r(x) then Q -~ % al. Therefore, . obta. the

ineguality

+>,2 |Glz

Thus, we see it is possible to bound a priori the arowth of modes in the
Fourier-collocation method for variable coefficient problems with
periodic boundary conditions.
On the other hand, for problems with non-periodic boundary
; conditions, Fourier-spectral methods can produce wrong solutions
even when they are stable. This is illustrated by Example 1.3

which we now study more carefully.

b i ]

Example 6.3: Hyperbolic equation with non-periodic boundary
conditions

Consider the problem (1.7):

du(x,t) . du(x,t)

L X = X + t (0 ~ x ~ n t >~ 0
u{d,t) = 0 (t >~ 0) (6.8)
u(x,0) =0 (0 ~ x « )



The solution is

u(x,t) = xt .

If we attempt to solve (6.8) by Fourier sine series using the

Galerkin procedure we obtain

N
u, = ! a, sin nx (6.9)

n=1

da N

n 4 nm 2 n 4
— = - = - 4£(- — .10
dt m mzl ;7:;5 an (-1)" + 7n ¢ ©p (6 )
m+n odd
where e, = 0 if n 1is even and e, = l1 if n 1is odd.

It is easy to verify that the above approxime* 1 is stable.

If we write (6.10; in the foim

da >
a% = Ay a+ f
> 2 n+1
where a = (aj,...,ay), f = (£1,.. 0B, £ = 5 (1774 2te /u],
then
, *

AN?AN= o .

Thus, ||exp(ANt)|| =1 fcr all N and t.

In Figs. 6.1-6.4 we plot the solution of (6.9-10) at
t =1 for N = 25, 50, 75, 100 . It is apparent that uN(x,l)
does not converge to the exact solution xt at t =1 as

N - «» . TIastead, Uy for N even appears to be converging as
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8 Fig. 6.1. A plot of uy(x,c) ve x for N=25 and t=)
determined by numerical integration of (6.9-10) with neqligi
8 time-differencing errors. A plot of the exact solution
’ xt at ‘1 to (6.8) is also given. Observe the apparent
- diverge..ce of uy(x,t) from the exact solution for O<x-t
, . and the enhanced Gibbs phenomenon at
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N=50, t=l.

S. .« as Fig. 6.1 except

Fig. 6.2.
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Same as Fig. 6.1. except N=100, t=],

Fig. 6.4.
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N + @ to the function

Xt x > t
= (6.11)

u
even 1 (x-t) +xt X <t ,

for t < LI while Uy for N odd appears to converge to

the function

xt x > t
u = (6.12)
odd T(t-x)+xt X < t

for t <% . The results plotted in Fig. 6.5 for uloo(x,tnz)
are also consistent with convergence tou the wrong sclution
(6.11) . Notice that the approximations uN(x,t) plotted in
Figs. 6.1-5 all exhibit a large region of nonuniferm con-
vergence near x = 0 and x =7 and that the errors in

the interior of the interval ¢ < x <7 decrease with N
roughly like l/\ﬁ? .

The origin of the divergence of (6.9-10) from the exact
solution to (6.8) is not instability; rather, the divergence is
due to inconsistency. Since |lexp(Agt)|| = 1, the method is
stable. To show that it is not consistent we estimate the

truncation error in the L2 norm,
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e, = ||Lu - LNuII,

for u = xt where Ly = PNLPN and Py 1is the Galerkin
projection operator and L = - 3/3x . This error can be

bounded from below by

N =|§Lu-PNLu-+PNLu - PNLPNuH

> HPNL(I-PN)uH —lKI—pN)Lull .

However, || (I-P )Lul| + 0 (like 1//N) as N - » because
this norm is just the error in tle Fourier sine series ex-
pansion of Lu = - g% Xt = ¢t ., Therefore, if we can show

that HPNL(I-PN)UH does not approach zero as N » «

then (6.9-10) is not consistent.

To estimate HPNL(I-PN)ull we proceed as follows.

Since

-1l1lo0-
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(I-P\)u = ) a_(t) sin n x

n=N+1
we obtain
N
PyU (I-Py)u = ] b (t) sin nx
n=l
where
b (t) =% i« M a (t) .
" T omeNel 37

mtn odd * ™

Therefore, since the Fourier coefficients of

a_(t) = 2(-1)™1 ¢/n

N
2 2
HPNL(I-PN)U|I = ) b

n=l
2
64 2 ( - )
== t° ] ] -5
n2 n=1 \ m=N+1 n“-m
m+n odd
N 2
. 64t ( E n )
h “2 n=1\ m=N+1 m2
m+n odd
N
2
2 n 2
> ot ) > C LN
n=l ;7 -1
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for suitable constants C and Cl' This completes the proof
that ||Lu - LNull does not approach zero as N + =,

Rlair Swartz (private communication, 1976) tracas the
inconsistency of (6.9-10) to the incompleteness of the set
of functions {L(sirnx) = -~ ncosn x, n=l,2,...}. This set of
functions is made complete by augmenting the set by the functicn 1i.
Whereas u may be well approximated by a function Uy of
the form (6.9), Lu may not be well approximated by the

function Lu . In fact, if | |lLu - LuN|I+O as N +» o ,

then

b
[ (Lu - Lug) dx > 0 (N+=),

0
Since
n n
g Lu, = - { ¥ na cosnx dx = 0,

Lu may be well approximated by LuN only if

™

0 = ({ Lu dx = v(0) - u(m),

which is generally not true.

As shown in Figs. 6.1-5, ug (x,t}) does convergr. to xt
as N + . The analysis given above provides no clue 0 the

fascinating way in which the method achieves this divergence.

There is no indication of the 'error' wave (—1)anx-t) that
aprears in (6.11-12) and propagates with speed 1 across
0 <x<mw. It seems that the complete natnemitical analysie

of the divergence of (6.9-10) is difficult an: we do not now
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have a justifiable argument to demonstrate convergence of ug
i by (6.11-12) as N + « through

to U en and n_4q 9Jiven by (

even ard c22 values, respectively.

In the next example we will show that it is not simply
the presence of boundary conditions but rather the non-periodic
nature cf the problem that causes the divergence of the

Fourier-spectral methods.

Example 6.4 Non-periodic boundary-free problem

Consider the problem
3; + (x-%) %& =0 (0 < x < m)

(6.13)
u(x,0) = £(x)

The problem is well posed without specifying any boundary con-

dition. However, since the solution is given by

kil n, -t
u(x,t) = f(3 + (z~5le ) {(6.14)
it is clear that the solution is not periodic in x . Since
r(x) = x - % has a bounded derivative, it follows from Example

6.2 that Fourier-Galerkin approximation to (6.13) is stable.
Nevertheless it is not convergent as shown by the results
plotted in Figs., 6.6~8 for f(x) = sinx and N = 5, 10, and

20 retained terms in the Fourier sine series.
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Fig. 6.6. A plot of u(x,t and u_ (x,t) vs x for HN=5,
t=0.5. Here u(x,t) is the axact sBlution of (6.13) and u(x,t)
is the Galerkin approximation to this solution using an N term

Fourier sine series expansion. Observe the apparent divergence
of uy(t,t)  from u(x,t).
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Same as Fig. 6.6, except N=10, t=.5,

Fig. 6.7.
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al Subtractions for Non—-Periodic Piobleirs

There is a method that can be used to ensure that Fourier
series yield convergent results for non-periodic problens.
The idea is to express the solution as the sum of a low-order
polynomial and a Fourier series; the polynomial is chosen so
that the Fourier series converges rapidly as suggested originally
by Lanczos (1956,1966) . The method has been usaed by Orszag
(1971c) and Wengle & Seinfeld (1977) to solve problems witn
non-periodic boundary conditions. We illustrate it here

for the prowo. liscussed in Example 6.4.

Example 6.5 Polynomial subtractions applied to Fourier series

The Fourier sine series expansion of the exact solution
u(x,t) to (6.13) converges slowly because, in general,
u(0,t) ¥ 0 and u(w,c) ¥ 0 . This slow cnnvergence of
the Fourier series of the exact solution implies that Galerkin
approximation is inconsistent, as shown using the methods
of Example 6.3. 1In order to avoid slow convergencr or even
divergence, we proceed as follows.

We seek the solution to (6.13) as the sum of a linear

polynomial and a Fourier series:

w

u(x,t) = b(t)x + c(t) (n-x) + an(t)sin nx (6.15)

&
n=l

whevre b(t) and c¢(¢) are chosen to ensur: that an(t) » 0

rapidly as n + « . Substituting (6.15) into (6.13) gives
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bUetdx + ' (t) (n=x) + aé(t)sinxntn (%—x)lb(t)- c(t)])

n-1
+ né a_(t)sinnx (6.16)
where
a_(t) = y nm_ .1, (6.17)
n=1 n-m- m f n *
n+m even
nzm

are the Fourier sine coefficients of % - X) fi X bn sir. nx

If we knew u(0,t) and u(" ¢} we could st Db(t)=u(n,t)/n and

c(t)=u(0,t). n; with this choice, tane Fourier sine series in
(6.15) does not exhibit the Gibbs phenomenon and an(t)=0(l/n3)

as n*, However, the boundary conditions on u are not known

as part of the srecifications of the problem ((.13). Therefore,

we must solve for b(t) and c(t) divectly from the differenatial

equation.

Fquating coefficients of sinnx in (6.16) gives
da
- n = L. v ™ 3 - n+1 - - ' 2 3 =
It [c'=D'+¢ bln( 1) + [b-c-2c ]E e, + a. (n=1,...) (6.18)
where ¢ =1 if n i1s odd, 0 if u 1is even; here we use the

n

Fourier sine seriecs expaasion of 1 and  x:

s o w w

s e

e it ed et
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- Y sinnx
1-4 7 sinnx

R*baa |

4

x=2 ] (-1)"* Ei%lﬁi )

n=]
Aiso, if b(t) and c(t) are chosen so that an-O(l/n3)

as n+w, then the Fourier series Zan sin nx may be differentiated

termwise so

o0
~ , 3 T . " b
! a_ sinnx= (%-x) ! a sinnx= (¥-x) n
n a_cos nx .
n=]1 H 9x n=l 0 2 nzl n
Therefore,
[ A " ®©
lim a sinnx =3 J na,
x+0+ nzl n 2pep N
o 1 @ n
lim ) a_ sinnx =~ 3 J (-1)" n a_.
x+7- n=1 D 2 =1 n

Using tl-~se results and setting x =t and x =0 in (€.16)

gives respectively,

®.leb -3 1 (-1)™ na_ (6.19)
n=

(6.20)
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a = 0 for n = N+1, N+2, ...
The above derivation suggests, but does not prove, that
an(t) + 0 sufficiently rapidly as n + = that inconsistency
problems are avoided. The exact solution of (6.13), which
satisfies (6.18-20) with N = =, does satisfy a_ = 0(1/n’)
as n+« ., However, the Galerkin approximation with fini‘~ N

does not yield such a rapidly converging result. 1In fact,

estimates like those given in Example 6.3 show that

= 1 > o
lLv - vl = 0(;377) (N + =) (6.21)
where v satisfies v(0,t) = v(n,t) = 0 and L = (%-—x)é% .

Since the Galerkin approximation (6.18) is stable (see Example
6.6), we expect that the errorg in the Galerkin approximation

=3/2  ¢or fixed t.

(6.18-20) are of order N

The above prediction has been tested numerically. 1In
Table 6.1 we list for various N the maximum errors in the
approximation obtained by solving (6.18-20). A plot of the
error uN(x,t) - u{x,t) vs x for N = 30, 40 at t = .5 is
given in Fig. 6.9 = 10 .

In the next example, we prove that the method of

polynonial subtraction used in Example 6.5 is stable.

Example 6.6. Proof of stability for polynomial subtractions

It is not obvious that the approximation (6.18-20) is

stable. Fourier series approximation without polynomial subtractions

are stable but not consistent (see Example 6.4). On the other hand,
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Table 6.1
N €™ Max|u (x,t=.5) - ulx, t =.5)]| ! n3/2 €N
. B

5 | 4.19 (-3) 4.7 (-2)
10 2.13 (-3) 6.7 (-2)
15 1.13 (-3) 6.6 (-2)
20 8.28 (-4) 7.4 (-2)
25 5.76 (-4) 7.2 1=2)
30 4.70 (-4; 7.1 (-2)
35 3.64 (-4) 7.5 (-2)
40 3.13 (-4) 7.9 (-2)

Table 6.1. Errors in the polynomial-subtracted Fourier

series approximation uN(x,t) given by

(6.18

for
N-3/2

~20) for the problem (6.13

} with

(6.22) and

f (x)

= sSinXx

t=.5. OLserve that the errors appear to decrease as

as N * = in agreement with the estimate (6.21).
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N

Pig. 6.9. A plot of the error u ,(x,t)~u(x,t)
in the polynomial-subtracted Pourier-series
approximation to (6.13) with fix'ssinx, N=30
and t=.5. The approximation uy{x.t) is given
by (6.22) and satisfies ;.wwtmo: the exact
solution u(x,t) is given by (6.14).
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the approximations obtained by polynomial subtractions are cornsistent

as shown by (6.21), but their stability remains to be shown.
To demcnstrate stability of (6.18-20), we reformulate

these equatioris in terms of uN(x,t) defined by

N
ug(x,t) = b(t)x + c(t) (n-x) + 1 a_(t) sinnx.
n=1 D

In terms of uN(x,t), (6.18) is eguivalent to

n auN - 3
g i (x= ) 7;% sinnx dx = 0 (n=l,...N)

whiie (6.19-20) become, respectively,

-

ouN T 3UN _

[‘5?*""5’ B =0,
X =7

[a9, TN

Lst—*'""i’ T3 =0,
x =0

(6.22)

(6.23)

(6.24)

(6.25)

Multiplying (6.23) by nzan, suming from n =1 to n = N, and

noting that

2
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we obtain

auN . auN 3 “N
0 'FF-+ (x- 7) = » dx = 0, (6.26)

Integrating (6.26) once by parts and using (6.24-~25), we obtain

9 d 1 9
] “N , _ Un -
s |32 Y -3 ‘a‘?" ‘5\‘}“" 0.

O Seumgy 4

Therefore,

3 m fang 2 m [ou 2 n . N ELN 2
ﬁfo(ﬁ-) dxs-Z({(—zﬂ)—;gl dx-g(x—-‘:z-) = \ 3% dx

Iutegrating the second integral on the right once by parts gives

R 2 m . 2 9 2 au 2

0 X=T x=0

so that

a 2 m 3u 2
3 N N
3 | (‘5?) ax < - [ (‘e?) dx.

Thus, we obtain the stability estimate

n AuN(x,t) 2 -t auN(x,O) 2
—_Tx—— dx S_ e Io —‘—Tx———— ax ., (6.27)
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The bound ({6.27) shows the stabiliiy of (6.18-20).

Examples 6.5-6 suggest that by subtracting polynomials of
higher and higher degree from u(x,t), the residual Fourier
series can be made to converge faster and faster. Subtracting
a linear pnlynomial as in (6.15) gives Fourier approximations
-3/2

with errors of order N as N+= ; subt:acting a guadratic

p~'ynomial gives Fourier approximations with errors of order

N°7/2; and so on. In the limit we disperse entirely with
Fourier series and obtain a rapidlv converging polynomial
approximation. The convergence theory of these pclynomial

speciral approximations is discussed in the nexc two sections.
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7. Applications of Algebraic-Stability Analysis

The main result of Sec. 5 does not provide us with a
systematic way of corstructing the family HN of Liapounov
matrices necessary to prove algebraic stability. In general,
these matrices are difficult to find. However, there are
several problems for which they can be found directly from
the differential equation,

It is very easy to construct Liapounov matrices for Galer-

kin approximations to

%%~= Lu

where L 1is a semi-bounded operator on the Hilbert space )‘"

We say that L is semi-bounded if

L+L < al (7.1)

for some constant a ., where L* 1is the adjoint of L defined

with respect to the Hilbert space inner prcduct ( , ). If L
is semi-bounded

4

geluu) < a(u{u) ' (7.2)

(R4

SO

(u(t),ut)) 5 e*tu(o),u(oy
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and the 'energy' (u(t),u(t)) grows at most exponentially with
t .
If an energy estimate of the form (7.2) exists, then Galerkin

approximetion based on the Hilbert space inner product (-°, =) is

stable (and, hence, algebraically stable). The Liapounov

matrix Hy may be chosen to be the N x N identity matrix

Iy. In fact, it follows from the Galerkin equations (2.6-7) that,
if f = 0, then

d . = *
3t (uN'uN) (uNa (L+L )UN) _f_ a(uN'uN)

i
Thus,

(1 (€) yuy (£)) ' e (uy (0) ,uy (0))

Since uN(t) = exp(LNt)uN(O) for all uN(O), it follows that

llexp (Lyt) || < exp(fat) so stability is proved. rhe reader is
reminded that with stability established, the theory of Sections

4 and 5 proves convergence for consistent schemes.

;Example 7.1: Semi-bounded Galerkin approximstions

The above construction establishes stability and thus con-
vergence for a wide variety c¢f Galerkin approximations. Among

these stable Galerkin approximations are:

(i) Solution of any problen u, = Lu that is semi-bouncded
in L2 (-1,1) by means of Legendre series. For example,

u tu, = f(x,t) with u(-1,t) = 0 1is stable (and convergent)
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when solved by Legendre~Galerkin approximation.

to be complete it is necessary to verify that the Legendre-
Galerkin approximation to this problem is consistent. This is
done as follows.

We write

HLu—PNLPNuII < |l (x-pgiLulf + HPNL(I—PN)uH .

The first term on the right goes to zero as N+ a% a rate
governed solely by the smoothness of Lu ; it measures the
error in the N term Legendre-Galerkin expansic.a of Lu .

Th. 3econd term is estimated as follows. Set

on

L(I-Pylu = n£1 a ¢_(x)

where {¢n} are normalized Legendre polynomials. If L is
a finite-order differential operator so L* is also a finite-

order differential operator (for example, [*=3/3x if L=-93/3x),

then
an = (¢n: L(I—PN)U)
= (L*¢nr (I-—PN)\J) .
Thus,
*
la | < e || I1¢z-pg)ul|
= O(nA/NB) (n+o ; N+w ),

where A depends only on L (A = 3/2 if L = -3/2x and on is a

normalized Legendre polynomial) and B depends only on the

smoo*hness of u (B is arbitrary if u is infinitely differentiable).

Thus,

=129~

For our argument
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I|PNL(I—PN)u|| = 0

faster than any power of 1/N if u and all its derivatives
are smooth. This proves consistency. This kind of proof
extende tn a wide variety of the examples to be discussed in

Sects. 7 and 8, but will not be xepeated.

(i1) Solution of u, = xu with the boundary conditions
u(tl,t) = 0 is a well posed problem in the Chebyshev inner

product

1
(wov) = f uix)vix) 4.
-1 | 1-x2)‘

In fact, if L = x 3/9x , and u 1is differentiable and

satisfies «a(:1l' = ¢ then, by integration by parts,

1 2 =2 <
(u,Lu) = fl x(l-xz)-‘\n u ax = = { (1-x%)" 2u”® ax = 9 .
-1

~1

Thus, Galerkin approximation to the problem is stable using
Chebyshev polynomials.

(1ii) Solution of u, +u, =0 (0< x< ®) with
u(0,t) = 0 is a well posed problem in the Laguerre inner

product

-~130-
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(u,v) = [ u(x)vix)e Xax .
0

In fact, if u(0,t) = 0 then, by integrating by parts,

[ ] o
- - L4 -
- f uu‘e xdx = - % e xu2 | - f e xuzdx < 0 .

0 0

Similarly, the problem v = u (0 < x < w) with u(0,t) =0

is also stable in the Laguerre norm.

{iv) Solution of u, = -Xu, (- < X < ®») is well

posed in the Hermite inner product

o0 o]

/ ux)v(x e X ax

-0

(u,v)
In fact,

w
=(u,u) = -2 [ x e ¥ uu, dx

- 00

so that integration by parts gives

3 * 2 -x? 2
sgla,u) = [ u®e (1-2x“)dx < (u,u)
-0
where we assum: that u << vVx exp (% x%) as [x! +
(v) Thn heat equation U o= ou with u(xl,t) = 0 is semi-

bounded in the Chebyshev norm. 1n fact, if u is differentiable

for |x| < 1 then
- -13)-
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1 -1 - 1
J (1-x2) 2 uu__ dx = (l-xz) uu_ | - J [u(i-x
-1 L. -1

T
-

XX -

The first term vanishes because u is a polynrmial in

therefore u(zl; = 0 implies

u

2 1/2

(1-x7) X = tl

The integral term on the right is

+
| =
e

+
|
e
]
ot
!
”
[\

<0

and therefore

4 fl
at |,

u2
dx < 0
-X

V152
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In the next two examples we generalize the procfs of
stability and convergence for Galerkin approximations given in Example

7.1 to show the starility and cornvergence of tau approximations.

Example 7.2: Semi-bounded tau approximations

(1) Cohsider the equation

Ju Ju

—— I Y e—

t X
with

u(>1l,t) =0

It was shown in Example 7.1(ii) that if L= x3/9x, then

L+L*<0O
in the Chebyshev inner product. If we seek the solution as the

truncated Chebyshev series

by the tau method, then uy satisfies exactly the equation

8u." apN
— X = 1 (X)T (x) + 7, ,(t)Ty._ (x) (7.4)
ot 3x N N N-1 N-1

b ]
4

Equating coefficients of xM and x" ' on both sides of

(7.4), we obtain
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= o0-l.n _ n2h=3,n-2

since Tn + --- . Therefore,

3
(uN.—a—u%,_N—) = ((L+L*)ug,uy) + [ag-Naglay

t lag - (N-lay jjag (7.5)
so that

5 T, 2 2 1. 2 2 <
3¢ [‘“N'“N"an'au-l] = ((L+2)uy,uy) - Nag - (N-llay,; = 0.

Since

N2
(ugeug) = 1 ay o
n=0

the above inequality is equivalent to

N=-2

3 Z 2 <
a, -0 (7.6)
3t n=p N
This proves stability: &N and ay-y are bounded because they

are determined in terms of agr 81r---r8y by the boundary

conditions u(tl,t) = 0.

For this example, we can prove stability directly from the

matrix representation of LN' In fact,
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1 N-s
.L L = '“k + 2 N N RN .Y, f -
(L) 5% cj( RN ke, gIOOZ3 N, 0skeN), (7.72)
? even
In the tau approximatiorn, the boundary conditions u(:l,t) = 0 require

that the last two rows of the matrix LN be replaced by

: k
= (-1)7, (7.7h)
(LN)N—l,k

(L,,) = 1. (7.7¢)

If the boundary conditions (7.7b,c) are not applicd then
the spectral approximation is unstable: without the boundary conditions

. . . N
NP 5 - Y 4 —
LN has the eigenvalue N (with the eigenvector An-2k (k)'

ay_ok-1 = 91 so that

l'eLNt]; > Nt

To prove convergence when the boundary conditions (7.7b,c) are

applied, let us first consider an odd solution in which an =0

if n 'its even., If we assumc that N = 2M+l1 and sct

dy = 22k+1 (0 =k <M

then the system reduces to

ad pD a
It
where
M~j
Dy =—(2k+l)5jk+ 2 zzo (2k+1) 84 2N (0<5< M, Ok M)

If we introduce the M x M transformation matrix 8§ defined by

Sjk = S4p T Sye1,x (023H, Ochan)

—lau—
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then S(D+D*)s* is a diagonal matrix with entries
(-4, -4, ..., -4, -4N - 12). Thus, we obtain n + D* < 0,
so that 3(5,3)/3tio which proves stability.

Example 7.3. Stability of tau methods applied to degree-reducing

semi-bounded equations

An argument similar to that given in Example 7.2 demonstrates

stability of tau methods in terms of arbitrary orthonormal polynumial

au
3t

reducing: L 1is said to be deqrece reducing if for any polynomial

bases for equations = Lu where L is semi-bounded and degrec

P of degree N, LP is a polynomial of degree at most N = k

N N
where k 1is the number of boundary conditions that are applied.
N-k+2 N
P reset

If L 1is degree reducing, equating coefficients of
in

auN ?
N
t n=N=-k+1 nn

implies that Tn(t)= aﬁ(t) for n = N-k+1,...,N; here

N
W (x,t) = ] a_(t)¢ (x)
N n=0 n n

and the orthonormal expansion polynomial ¢n(x) is assumed of degree n,

Therefore,
‘8‘ N <
- ' = * S
d 5 (uguy) ala (HAI,]uN,uN 0
n=N-k
so that
N-k
3 2 <
'S'E z an - 0°
n=0

i
. —— g b
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which proves atability since An-k+1’ """ 1Ay are determined by

the boundary conditions in terms of a,,3;,....,8y,

Example 7.3: More stable tau approximations

(i) Suppose that

u +tu = 0 (-1 < x <1, t > 0)

u{-1,t) =0

is solved by tau approximation using Legendre polynomials.

The Nth degree Legendre polynomial Uy satisfies

) 9 '
3t Un Y5 UN T NP

so that

d 2 2
g ([ o -y eyl <0
which proves stability.
(ii) Suppose that
e ® Uxx
u(xl,t) = 0

is solved by the tau method using Chebyshev polynomials. Since

2 N
L ='Ji7 is degree decreasing and L + L o (see Example
ax
7.1(v)), the method is stable.

(iii) The solution of
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u, +u, =0 (0 < x <>, t >0
u(0,t) = sint (t > 0) (7.8)
u(x,0) = ¢ (0 < x < ™)

by Laguerre polynomials is stable using the tau method since,

by Example 7.1 (iii), L is semi-bounded. The equations of

the Laguerre-tau approximation to (7.8) are a simple modification
of (2.23-24). 1In Fig. 7.1 we compare this tau approximation
with the exact solution of (7.8) at t = 30 for a 20-term
Laguerre 2xpansion. The reader should compare this approximate
result obtained by the tau methocd with the best Laguerre approxi-

mation to sin x plotted in Fig. 3.12.

In the next example we dis~uss some ways to find non-trivial

Liapounov matrices {HN} when L is not semi-bounced.

Example 7.4: Polynomial approximations to a variahle coefficient

hyperbolic eguation

Consider the initial-value problem

u(x,0) = g(x) (7.9)

which is well posed without requiring any boundary conditions.

The exact solution.ko this problem is

u(x,t) = gixe
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so that u(x,t) approaches a constart as t+v:

u(x, t) ~g(0) (t+=, |x|<1).

The problem is well-posed in the sense that ||exp(Lt)|]

is finite for finite t, where L= - x3/9x and Ils1t is
the usual L, norm. However, |lexp (Lt)|]|= exp (% t) for
any t because the function that extremizes ||u(t)|| subject
to [|u(0)[|=1 satisfies u(x,0)= g {x) where
t/2 )
+ e lxl<et

g, (x) = 2 -

t ‘ 0 |x|>e"t.
Therefore, ||exp(Lt)|| grows exponentially as t-+=.

The operator L is semibounded in the usual L, norm:

1 1 2 1.
2 [uwldx =- [ x W gx = - w?(1) - v¥(-1) + [ u ax
ot 9 X X1
-1 -1
1
< | u? dx,
- -1

so L + L* < I. Therefore, Galerkin polynomial solution of
(7.9) 1is stable and convergent. The Legendre polynomial approx-

imation uN(x,t) satigfies

ou .

N N _
St + X 3% 0 (7.10)
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exactly because no boundary conditions are applied and L is
degree preserving. Therefore, Galerkin, tau, and collocation
approximations to (7.9) are identical &and all three methods
are stable.

In fact, all polynomial-spectral methods applied to
(7.9) satisfy (7.10); all polynomial methods for this problem
give identical results and, therefore, they are all stable in
the usual L2 rorm. In terms of the natural norms for a general
polynomial basis {wn}, i.e. that norm in which (wi,wj) =Sij'
the spectral approximation (7.10) is algebraically stable if

the N x N matrix whose elements are

(H,)

N 5k = / by (x) vy (x) dx

has a condition number which is bounded algebraically, i.e.,

-1
| gl L] g 8

As an example of the complicated behavior of spectral

| = 0 (N°) (Now),

approximations for this problem in norms different from the usual

L norm, let us consider the Chebyshev-L2 norm. It may easily

2
be shown that L + L* is not semibounded in the Chebyshev inner

product. For example, consider the trial function

v = To - TZN
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then

«L+L*)v,v) = = (xv, V) - (V,xvy)
T +T
2N+1 "~ 2N-1
= —(-ZN[TZN-1+. . .+T1] 'Tl - 2 )
= % N(v,v) .

Nevertheless, Chebyshev approximation to this problem is
algebraically stable. This fact may be explicitly demonstrated

by construction of a Liapounov matrix.

A Liapounov matrix for the Chebyshev approximation to (7.9)

may be found by direct examination of the evolution equation for

the vectorx ;N ='(ao,...,aN):
aan N
3 - - na; - 21 pa (n=20,...,0. (7.11)
p=n+2
p+n even

Since a, decouples fron ajse.erdy in (7.11),we can restrict

attention to a,,...,ay. Suppose we define {HN) by
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Then

o -1 0o -1 0
T
HNLN + LNHN = -1 0 -1 0 -1 H
0o -1 0o -1 0

LRI Y
LA )
ss e

the matrix displayed above has rank Z «nd the ronzero eigenvalues

are -[N/2]1, -1(N+1)/2). Therefore, by the theory of Sec. 5,

L.t
le ™1 <fllmgll g™t 1= /7

where ||~!' is now the Chebyshev norm. Thus, L 1is

*
algebraically stable in tle Chebyshev norm even though LN* LN

is unbounded in this norm.
The qualitative behavior of \lexp(LNt)l( as a function
of N and t is as follows. For fixed t and N-w,
||exp(LNt)|| = 0 (Nl/4); this result is justified heuristically
by following the argument given in Sec. 5 that 1led to (5.4).
On the other hand if t > tnk, |lexp(L t)]] = 0'/?) as N
A heuristic justification of this result is as follows. Let
uix,0) =1 for |xj<e, 0 £for |x|>e. Then the exact solution
of (7.9) for t>&n 1l/e¢ is wulx,t) v 1 ror |x|<1, so ||u(x,t)||2q,ﬂ
as ¢~0t for t>&n 1/¢r. As in Sec. 5, we conclude that
llexp(LNt)||= 0 (Nl/z) for t>tnN as Ni+w. (Even in the usual
L, norm, IIexp(LNt) ll=0 (%) when > 4nN, which mimics the

unbounded growth of || exp(Lt)|| as t +».)

-143-



§. Constant Coefficient Hyperbolic Equations

In this Section, we discuss the stability of spectral methods

for the problem

%‘é+%§=° (Ix] <1, t>0) (8.1)

with the initial condition

u(x,0) = f£ix) (Ix! < 1) (8.2)

and the boundary condition

u(-1l,t) =0 (t > 0) (8.3)

The results for this problem can.be extended to a general

hyperbolic system of the form

with characteristic boundary conditions, because for any hyperbolic

system A can be diagonalized by a real similarity tranformation.

The operatur [ = - g% is semi-bounded in the usual

Lz(-l,l) norm when operating on the subspace of functions v that

satisfy the boundary conditie~ v(-1,t) = 0. 1In fact

1
(V‘LL"'L*}V) = _zjl v-g—:dx = _v2(1) < 0
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and therefor» Galerkin and tau methods are scable using

Legendre polyaomials.

However, L 1is not semi-bounded in the Chebysbhzv nor . To

show this, we set

v(ix) = TZN(x) - Tl(x) - ZTo(x)

so that wv(-1l) = 0 . In this case, using the result

Ton = WNI[Tyn 1 *Ton-3* - *T1

we obtain
1 1
o =2 [ 0 B v a
-1
1 2 21
= -2_{ (1-x€) 7I2N(T2N~1+T2N-3+"'+T1)‘Tol(T2N‘T1-2To)dx

(8.4)

"
<
N

The fact L + L* is not semi-bounded is consistent with the Zfact
that exp(Lt) is not a bounded cperator for t<2 in the Chebyshev
norm (see Sec. 5). However, these results do rot prove that

Chebyshev-spectral approximation to (8.1-3) is not convergent.
In fact, we shall show that, while Chebyshev-spectral approximation

to (8.1-3) is not stable in the Chebyshev L, norm, it is algebraically

stable in this norm.
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In order *o investigate algebraic stability, we must =°udy more
carefully the behavior of the Chebyshev coefficients of the

approximate solvtion

N

ue = [ oa ft)T (x)
n=0

The differential equations for the an's are giv. by (72.11)

for Galerkin approx’.sation; for the tau method, and

(2.19)

(2.32) for the collocation method. &s remarked in Sec.

2, all
these equations may be written in the vector form
3a _ >
3¢ - Lny 2
where a = (ao,al,...aN) and Ly is an  (N+1) x (N+1) matrix.
Numerical Evidence for Algebraic Stability

Let us first examine the behavior of LN + LN*' In Table 8.1
we list the largest eigenvalue of LN + LN* for N= #3,20,...,100

This tabl~ indicares that the
largest positive eigenvalue of L,\I + LN*

constant C

for the three Chebyshev methods.

grows 1li} . CN2 fcr some

.

If I,N were a normal matrix this would imply
Lyt "
that Jle ¥'|]] behaves like exp(% CN“t). However, the matrices
LN

*

are not normal and therefore the large eigenvalues of L + Ly

do not imply instability.
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Table 8.1

—-—

N ? Collocation ! Tau ! Galerkin
-+ M -
10 % 68.84125 i 21,4089 72.8947
20 i 287.6920 ! 84.8970 296.3027
30 f 656.4818 : 190. 4908 669.6434
40 , 1175.2124 338.1769 i 1192.9231
5¢ © 1843.8839 i 527.9525 |  1866.1433
60 i 2662.4266 i 759.8167 | 2689. 1042
70 S 3631.0503 f 1033.7690 i 3662.4061
80 E 4749.5453 ! 1349.8093 5 4785.4489
99 | 6117.9812 ! 1707.9375 6058.432y
100 i 7436.3584 ; 2108.1534 i 7481.357¢
Teble 8.1. The largest positive eigenvalue Amax of LN + LN*

for the Chesbyshev-spectral solution of the one-dimensional wave
equation (8.1-3). The Galerkin approximation to this problem is

given by the solution to (2.11), the tau approxiration is given

by (2.19), and the collocation approximation is given by (2.32).

Obsgserve that ) A, ch ag N + w where c %+ 0,75 for the

max
Galerkin and collocation methods and ¢ * 0,21

method.

for the tau

-147-~
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In Table 8.2, we give the norms of the matrices
*
oxplLN] . exp(LN ] for the three proiecticn methods (Galerkin,
collocation, and tau). The results indicate that ||exp(LN)I| grows

1/4 as N *»o (as argued heuristically in Sec.5). 1In other

only like N
words , LN is algebraically stable (at least for t=1). This result
shows the extreme pessimism of the energy estimate !lexp(LNHI =
O(exp(% CNZ)); crude energy methods may be very misleading for non-
normal evclution operators,

In order to understand better how the Chebyshev spectral
methods «void an energy ‘catastrophe' [energy growth like exp(Nzt)]

we have solved the tau equations (2.19) numerically with a very

‘bad' initial condition:

ug(x,0) = (T (x) + 2T, (x) + (DN To(x) 1/ VT . (8.5)

For the tau method, this initial condition satisfies

J

\ . 2
g (et [ =ty (L@l iug) = 0N (N s -

t~0
In Figs. 8.1-2 we plot the energy (uN,uN) ve t for N = 25
and N = 50. It is appavent that the initial slope of the energy
growth is of order N2 bucr that the energy does not maintain this
rapid rate of growth. Observe that the reqgion of rapid growth
is closer to t = 0 for N = 50 than for N = 25, The behavior
observed in F;qs. 8.1-2 is not inconsistent with the fact that

uN(t = 0) is a 'pad' eigenmode of LN + LN*. Because LN is
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Table 8.2

T i
N : Collocation i Tau Galerkin

1 f
10 j 2.0707 : 2.0003 2.5788
20 i 2.7932 ? 2.8119 ; 3.1903
30 ! 3.4620 { 3.4857 ; 3.8328
40 ; 4.0324 g 4,0514 ! 4.4078
50 ; 4.5222 ' 4.5339 J 4.8630
60 j eon17 | 6,085 ! 5.2057
70 ] 5.2961 , 5.4002 é 5.5262
80 g 5.6586 |  5.7770 ? 5.8689
90 ! 6.02%2 ! 6.1401 g 6.2526
100 j 6.3818 6.4831 ; 6.6257

Table 8.2. The _argest eigenvalui/zxmax of exp(LN)exp(L;).
Observe that A .. behaves as cN as N +» o where

c # 0.6 for all three spectral methods. The

largest eigenvalue of exp (LN) exp (L;) grows only like
N1/2 despite the existence of eigenvalues of LN + L&

growing like Nz (see Table 8.1).
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non -nornal the 'bad' initial condition is not an eigenmode of
L, so that after evolution from 0 to ¢t exp(LNt), Uy ‘rotates’'
out of the region of bad modes of LN + LN*.

The direct computation of exp[LNt] for t=1 1is nct encugh to
verify algebraic stability because the theory of Sec. 5 shows
that we must study the behavior of exp{LNt] for a complete
time interval 0 <t <T . This may be done using the method
suggested in Sec. 5 for the numerical verification of algebraic
stability. PFirst, in Table 8.3 we list the numerically computed

eigenvalues of L Observe that all the eigenvalues ©f LN have

N -
negative real part. (This result will be shown rigorously later.)
Therefore, '!exp(LNt)ll + 0 as t*» for fixed M. Thus

the Chebyshev approximations are asymptotically stable in the
sense that they remain bounded as t+= with N fixed.
In Figs. B8.3~5, we plot the Ll-matrix norm of exp(Lyt)

ve t for N=5,15%,25. OCbserve that as to» for fixed N,

1/2

llexp(LNt)H1 apprcaches zero while it grows slowly (like N°/ )

as N*» for fixed t<2  (Note that growth of lIexp(LNt)H1

1/2 as N-= is nct inconsistert with growth of

1/4

like N

llexp(LNt)llz like N/7.) Also observe that the norms seem

to have a boundary layer at t=2 such that ‘]exp(LNt)}ll +oo

as N+ for t<2 and ~»0 as Nes for t»i. This behavior

is consistent with the unboundedness of exp(Lt) for t<2 [see (5.4)].
Asymptotic stability does not prove stability because LN is

not normal. The next step in the computational proof of stability

is to compute numerically the Liapcuncv matrices HN satisfying

=152~



e

g

Table 8.3

N Collocation Tau Galerkin
10 -2.4532 -2.999 -1.9306
20 -2.5932 -3.9320 -2.15
30 -2.7267 -4.5380 -2.32
40 -2.849 -4.9918 -2.4659
50 -2.966 -5.3837 -2,5965
60 -3.0824 -5.7266 -2.7226
70 -3.1985 -6.0489 -2.8478
80 -3.3162 -6.3650 -2.9738
90 -3.4365 -6.6861 -3.1017
100 -3.5597 -7.0229 ! -3.4335

Table 8.3. The real part of the eigenvalue of LN with
least negative real part for the collccation, tau, and
Galerkin spectral approximations to (8.1.3). Since all the
eigenvalues of L have negative real parts, these spectral

N
methods are asymptotically stable as t -+,
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A good method to compute HN is described by Bartcls & Stewart
(1974). In Table 8.4 we list the condition number of HN for

the Galerkin, collocation and tau methods. This table suggests

that the condition number of HN grows at most like N3 as N

for the Galerkin and collocation methodéf and like N2 for the

tau method. Recalling (5.11), we obtain

Nl et

3
|\[exp[LNt];| = 0 (N2 e ). (8.7)

for all three methods. 1t should be noted that (8.7) gives only an
upper bound for |lexpl1*1!] . According to the thecory given in
Sec. 5, this upper bound can be sharpened by at most | [|Ly|] = 0 (N?)
(N»=), explaining the origin of the difference between the estimate
(€.7) and the observed behavior Nl/4 of the computed L,-matrix

2
norms.

In the above discussion, we have given numerical evidence
for algebraic stability of the Chebyshev-spectral methods for
(8.1) . We shall now prove rigorously that Chebyshev-spectral
methods for (8.1) are algebraically stable,

Proof of Algebraic Stability for Chebyshev-Galerkin Approximation

In the Chebyshev-Golerkin approximation to (8.1), we represent

the spectral approximation Uy by the secries

- m o - n\
uy = ) a () [T ~(-1)"1,] (8.8)
n=1
T s : _ ey 5/2 ;
The condition number of “N can grow no faster than N as
- 2
N+x, To sce this, we note that (5.14) gives ||HN1||= 0(NT)
1/- : ,
while (5.13) and the results that || exp(LNt)ll = 0(N /}) for t-
and llexpu) 170 as No= for t-2 qive llngll= o'/

as N«

I Rl I

to



Tabic 8.4

N Collocation ' Tau 1 Galerkin
- . e e i e
2 2 2
10 4.1463 x 104 3.1090 x 10 4.6388 x 10°
! ! ;
20 3.0332 x 10°  © 1.2421 x 10°  3.2672 x 10°
30 9.8746 x 10° | 2.7938 x 10° ' 1.0464 x 10%
' ' | 3
40 2.2940 x 107 | 4.9662 x 10° | 2.9083 x 10%
50 4.4220 x 10° ‘ 7.7593 x 10° | 4.6138 x 10°
—_— | R
Table 8.4, The condition number HHNllliH;lli in the
L matrix norm of the Liapounov matrices H for the

2 N
collocation , tau, and Galerkin spectral methods for (8.1-3).

Fc (he collocation and Galerkin methods, the condition
number seems to grow like N3 as N+=+«~ , while for the tau

P

method it scems to grow like Nz as N»o |,

TS e ¥ e e et a7



Recalling (2.34), u satisfies

duy
ot

We can determine 1 _.(t) by equating the coefficients of x

in (8.8):

N

N N T (x)
*ox T W L

n=0 n

1" . (8.9)

N
N

da,(t)
T (t) = a“ — ¥

Let us now multiply both sides of (2 9) by 2(1-x)uN and integrate

with respect to the Chebyshev weight function (l_x2)*1/2. Thus,
the left hand side of (8.9) becomes
1l 3
2 [ (ex)ugl—mg N, uN‘(Jx) ¥ ax
-1
1 1 3 du 2
d ¢ 2 - 2 . -~ N
= 3 ;] (1-x) {1-x°) 4 uNdx-i-_{ (1-x)*(1+x) -5 dx
1l . 1
2, - -
= a%_— _{ (1-x) (1-x“)"% u{:dx 3 (1-x)*(1+x) 3 u;
12 “% 10 40t
+ [ ug(3(1-x) T (+x) T 4 #(L-x) T (14x) 7] dx (8.10)
~1
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The boundary term in the last expression vanishes because Uy
is a polynomial satisfying wu,(-1) =3 . Alen,

N N
(L-x)uy = (1-x) \Elanwn-(_l)n’rol =nZlan[Tn-(-1)“T0)

-? (3 . +T _) - (-1)")
Lot 2 U T e 1

N n N - N
= - - - [ * - . n
nzlan[Tn (-1)"1,] snzlaln('rr et DR 3 anzlan['rn_l--(-l) T,

(g8.11)

The first and third sums on the right in (3.11) are orthogonal

to the right side of (8.9). The inner product of (l—x)uN

witn the secton! sur on the right in ‘R.9) gives

da .
—1{_13N - - N __ 4 _2
(~1) ™ 2N tay 3¢ =% 3t 2 (8.12)

Combin ng (8.10) and (8.12), v.e obtain

1

4 2, -%
b5 -{ (1-x) (1-x°) u.: ax+ 3 & as <o (8.13)

-

This inequality proves that Uy is stable in the new norm defined

in (8.13):
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1 .
[ull® = j a0 (1-x2) fu(x)| 2 dx (8.14)

It remains to prove that the norm defined by (8.14) is
algebraically equivalent to tine usual Chcbyshcv—L2 norm. That
is, wo must show the existencc of two functions cl(N) and cz(N)

such that for every Nth degree polynomial Uy

1 uw? 1 (1-x)u\12 1 uN2
c, | —Pe ax < [ —=L dx < ¢, [ = dx  (8.15)
1 ARz s R A 1 visw

wherc‘ l/cl(N) and CZ(N) grow at most algebraically as N+o,
The sccond inecquality in  (8.15) holds with cz(N) = 2 becausc
1-x<2.

Tic first ineguality in (8.15) is more difficult to

establish. By the mean-value thcorem,

Y 2 rov N2
I _._-.;2_(._ u = (l—g ) I e dx (—l<€ <1)
21/ 1_£? N N -1 l—xz N

However this dces not prove the required inequality because it is
not clecar that l/(l-gN) is bounded algebraically as N-® for all

polynomials.

To establish the first incquality in (8.15) we usc a different

approach. We substitute the Chebyshev polynomial expansion

=161~

N e mimeiAsour AN bR )

+
i



and obtain

2 N
1-%)U
T / (igfl_ﬂ__ dx = 2a. - 2aga, + } a 2
-1 3 n=l 0N
/1-x
N
“lf(aa a_a_.,)
K n=2 0N n-l1 n “ntl

where HN is the symmetric, positive definite, (N+1l) x (N+1)

tridiagonal matrix whose elements are

C. if § =
j £y =k
ke, if § = k-1
By = (8.16)
—%ck if 5 = k+1
0 otherwise,
where c, = 2, ¢ =1 if n > 0. To complete the demonstration of

the firet inequality in (8.15), we must show that HNicl(N)I

where cl(N)>0 and l/cl(N) is bounded alyebraically as N-o,

Since Hy, is nearly a constant-diagonal tridiagonal matrix, the

eigenvalues of HN can be studied by standard techniques: if

DN = det(HN—AI). then DN satisfies the three-term recurrence
rela:cion
D, = (1-\)D, , - %D (N>2) (8.17)
N N-1 4 “N-2 T=70¢ P
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Since (B.17) has constant cocfficients, it is easv to solve
exactly. From this solution, it is not hard to show that the

smallest eigenvalue of HN satisfies

2
A (‘?’!’1 ~ 2o (),
mi 8N

: _ : 02,2 e
Choosing cl(N) = Xmin(N) gives l/cl(N) - BNT/n (N-+@)

This proves that the norm defined by (8.14) is algebraically
equivalent to the Chebyshev norin and, thercfore, Chebyshev-Galerkin
approxim.tion to (8.1) is algebraically stable. Note also that (8.13)

shows that the matrix H defined in  (8.16) satisfies (5.7b) with

N
cN) = 0. since ||ug|| = 0) ana |{ut[] = ow?, (5.11)
implies that Iicxp(LNt)ll = 0(N) as N»v, which also foilows

directly from (8.15).

We have not yet beern able to obtain a rigorous demonstration

that IIexp(LNt)l| =0 (N1/4) as N+~ as found numerically in
Table 8.2, Our best result to date is I!exp(LNt)ll = 0(N) as
N+,

Althouah the problem (8.1) is not well posed in the Chebyshev norm

(as shown in Sec. 5), it is well posed in the norm definced by (8.14).

Using (8.1) and (8.3), wc obtain
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Thus,

so that [IeLtllf}

Proof of Algebraic

1
. 1-x\1/2
uu dx =-f (I:§) u u dx

3/2

(14x) dx < 0.

in the ncem (8.14) .,

Stabality for Chebyshev-Tau Approximatiosn

The proof of
to that just given

approximation Uy

where

algebraic stability for the tau method is similar
for Galerkin reximation. The Chebyshev-tau

satisfins

BuN auN
3t + % Tn(t) TN(X) (8.18)

A

(8.19)
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Therefore ,
aZu daN N‘l

- e TN e T+
(1-x) 335% dt "N 2q

Moreover, comparing the coefficients of xN

(£.18) we find

! b T,

(8.20)

on both sides of

daN
wi(t) = 5 (8.21)
Egqs. (8.18-21) imply
auh UN ” “h ”N(da )
(5 (1=X) 3 (.;x,(l X)gzsg) = - 20 'at (g.22)
Since
uy
Tt lx=-1°0,
we obtain
2
auN 9 Uy L
__N _ - 1/2 -
e 0 0 gm0 =) @020V 2 Gy /a0 26 x ax
-1
1 -1/2 3
= { (1-x) (L+x) /2(3uN/at)2
-1
Therefore,(8.2l) gives
1
d
& [ oo e u” ax < 0

~165-
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du
This proves that the evolution of 75? is stable in the norm
Ju
(8.14). Finally, the boundedness of 7;? implies the

boundedness of Ugyr as will now be shown. If vy is given

by (8.19), then

Ju N-1
N=X b T
X nzonn
where
c o -b
n-1n-1 a+l
a, = T = (n = 1,...,N)
The boundary condition uN(—l,t) = 0 requires that
)
Q&, =
0 n=1 "
. au . .
Therefore, since ° N is hounded, so is u_.

% N
In Sec, 3 we present a variety of numerical results for

the numerical solution of (8.1) by Chebyshev and Legendre spectral
methods.

Effect of Boundary Conditions on the Stability of Spectral Methods

-bLet us discuss the effect of boundary conditions on the
stability of the Cheybshev approximations to (8.1). 1In Sec. 6 it
was shown that incorrect trecatment of the boundary deces not affect
the stability (though it does affect the convergence) of the Fourier-
Galerkin method. This is not the casc for the Chebyshev-spectral
methods. Let us assume that we solve (8.1) ignoring the boundary

condition (8.3) and supposc that uN(x,O) = TN(x). The resulting

_?1". 5--
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system of Galerkin equations for (an} is

aan 2 ?
T -3 ) pa (8,24)
t “n p=n+1 p
p+n odd
where an(O) = 6nN' Eq. (8.24) can easily be solved: aN_k(t)

is a polynomial in t of degree k of the form
= (uoyR Ny Lk
ag g (t) = (=2)" () £+ ... (8.25)

This solution is clearly not bounded by any finite power of N.
Thus, the Chebyshev methods are algebraically unstable when no
boundary conditions are applied.

If we had imposed the boundary condition u(+1,t) = 0 in
addition to, or instead of, the boundary condition u{(-1,t) = 0,
then Chebyshev-spectral solution to (8.1) would be unstable.

With u(+1,t)=0 instead of (8.3), the Chebyshev-spectral approximations
to che operator -23/dx all have eigenvalues with positive real parts
(that grow as N + =), Similarly, if we tried to impose the extra
boundary condition 9du(+l,t)/3dx = 0 in addition to u(-1,t)=0 [as

is frequently done with finite difference methods], an unstable

scheme would result,

The effect of imposing u(+l,t) = 0 in addition to u(~1,t) =0
is slightly different for Legendre-spectral methods. With u(-1,t)=
u(+1l,t)=0, Legendre-spectral methods for solution of (8.1) are

semi-bounded. In fact,
* 1
(Ve (L+L Yv) = =2 [ vdv/3x dx = 0
-1

when v(*1l,t) = 0, so these methods are semi-bounded and stalle.
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However, these spectral approximations are not consistent.
For example, Galerkin approximation involves expansion of
u{x,t) in terms of the functions ¢2n(x)=P2n(x) - Po(l)
¢2n+1(x)=P2n+l(x)- Pl(x) that satisfy ¢n(11) = 0.

But 3u/3x csnnot, in general, be expanded in terms of the

functions ¢$(x) .

The above situations are typical of rapidly converging
spectral methods. Spectral mechods are extremely sensitive to
the proper formulation of boundary conditions. When proper
boundary conditione are imposed so the prcblem is well posed,
the methods yield very accurate results; when improper boundary
conditions are mistakenly applied, the methods are likely to be
explosively unstable. The stability and convergence of spectral

methods follows very closely that of the exact equations.
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9. Time Differencing

In previous sections we have investigated the properties of
spectral approximations to the spatial operator L of the

differential equation

In this secticn we investigate the properties of time-integration
techniques for the solution of the cemi-discrete spectral approx-

imations

auy
N _ 9.1
3¢~ LnY (

Time discretization errors in both finite difference and
spectral methods are typically much smaller than are spatial
discretization errors. There are two reasons for this: (i) time
steps are fregquently restricted in size by explicit staoility
conditions -- stability of the time integration requires that
time-differencing errorsbe small; and (ii) many problems involve
several space coordinates so any possible efficiency in the
representation of the spatial variation of the dependent variables
is auite important to the overall efficiency of the method-- if
the number of degrees of freedom necessary to describe a certain
three-dimensional field acvurately can be reduced by two in each
space direction then the totat number of degrees of freedom is
decreased ‘'by a factor 8, but a similar improvement in time
differencing gives just a factor 2. We will investigate

here only finite-difference methods of finite-order accuracy for
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tinewise solution of (9.1) despite the infinite-order
accuracy in space of many of the spectral methods discussed
in earlier sections. ©No efficient, infinite-order accurate
time-differencing methuds for variable coefficient problems -
are yet known. The current state-of-the-art of time-integration
techniques for spectral methods is far from satisfactory on both
theoretical and practical .grounds and the results to be presented
here must be regarded as only & .Reqginning.

One of our prime goals is to investigate the stability of
time differencing methods for the solution of (9.1 ). To o
this we must first explain how to extend the stability definitions
given in Sects. 4 and 5. Let ug(x) =‘G%(x,nAt) be the approx-
imation to the solution of (10.1) at time nAt, where At is a
time step. Time differencing methcds involve approximat.ing

. . . +1
in some way to give a rule for constructing ug :

n+l n N
Uy = KN(At)uN , (9.2;

where KN is an operator acting on uy- Using this rule repetitively

it follows that

A n
u, (x,nAt) = [K (at)] u (x,0), (9.3)

where for notational simplicity we assume At fired. We say that

(10.2) is strongly stable if

ll[KN (At)]nll < K(nAt) {(9.4)
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for all N and n sufficiently large and At sufficiently small.

Here K(T) is a finite function cf T. We define generalized
stability by replacing ‘K(T) in (9.3) by NprTK(T) as in(5.2).

A sufficient, though not necessary, condition for strong

stability (9.4) is ,
| IRg(at) || -1 < wat (9.5)

for some finite x and all At sufficiently small. If KN(At)
is a normal matrix then stability is assured if the eigenvalues

A of Ky satisfy the von Neumann condition
max|A] < 1 + kAt (9.6)

for sufficiently small At (Richtmyer & Morton 1967). If KN
is not normal, then ( 9.6) is still a necessary, though not

sufficient, condition for stability in the sense of (9.4).

The importance of these stability definitions is that they
lead to the fully discrete form of the equival!znce theorem (see

Sec. 4): a scheme is consistent if

KN(At) -1
l(‘——-z't——— - L)n|| +0 (9.7)

as N+ » and At -+ 0 for alli u in a dense subspace of H;

scheme is convergent if
[lug - w(nat) [| ~ 0

as N+ and At + 0 for all n satisfying 0 < nAt < T and
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all u(0) e¥. The equivalence theorem states that for consistant
approximations to well-posed problems, stability is equivalent
to convergence.

Let us now study the stability properties of some
specific time-differencing methods.

Implicit time-integration met'..’s

Two *time-integratinn methods that are unconditionally
stable for every algebraically stable spectral method are the
Crank-Nicolson scheme and the backwards Euler scheme. For any
semi~-discrete spectral approximation (9.1) to u,. = Lu, the

Crank-Nicolson time-differercing scheme is given by

n+l n
n+l n _ Uy tuy a
Uy U = At L > ) (9.8)
and the backwards Euler scheme is given by
n+l n n+l
: - = u _
Uy W At Lo Y. (9.9)

To prove that (9.8) or (9.9) is stable, we prouceed as follows.
If (2.1) is algebraicalily stable there exists a family of

positive definite Hermitian matrj .es {HN} such that

H L“ + L

*
N Hy < a(N) H

N N

or, equivalently,

1/2 -1/2 + -1/2 172

*
By C Ly Hy Hy L By T < an,

=172~
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wher¢ a(N)<d inN for some finite d. Substituting

into (9.8-9), we obtain, respectively,

n+l n-1
N N My ) ‘ .
n+l n _ n+l
vN VN At MN‘VN , (9.11)
where
= 1/2 -1/2
MN HN LN HN .
Taking the scalar product of (9.1C) with
+
vg + vg 1, we get

®

. n+l, 2 n,; 2 At n+l n MN+ n+1 n
. - = * — S—— .‘
lI N ll ||VN |I 2 ((VN +vN)p\—T )(VN +VN)
aldt n+l n,;2. aldt n+l | 2 n,, 2
< 85 v e P 82 v M S et

(9.12)
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Therefore,

n+l,;,2
+ A
vy P2 %%:r;%gﬁ%%.|gvnrglz, (9.13)

walles

which proves generalized stability for v and, hence, also for

N

-1/2 v

Ug T Hy N’
Simil-rly, we may show that the backwards Euler method
is unconditicnally stable. Teking the scalar proda.ct of (9.11)

with an+1 + an ' we obtaii.

n+l; ,2 n 2 . n+l n n+l
”.VN II "‘HVNH = At (AN VN 'VN +VN )
= At (MN an+l' 2an+1 i AtMN VNn+1)
n+l, , 2
< adt [t (9.14)



e

I,
-

N

oA

S

S

‘..

e .IJ'lE e

\
S TR i N

Do

o

R

so that

n+l 2 1 n,, 2
Y% N o VN HT

proving generalized stability of Uy -
Note that the above proofs show that if a(N) is not a

function of N then Vg ™ HNl/2 Uy is strongly stable for bcth

the Crank- Nicolson and backwards Euler schemes.

Spectral approximations using Fourler series

Next, we consider several! time integration

methods for Fouvvier serier spectral approximstions to

u, + u = (

with periodic boundary conditione. As shown in Sec. 6, the

collocation equations are

N _ -1
= = C DCuy (9.15)

where the matrices 2Nx2N C and D are defined in (6.3).

The 'leapfrog' time differencing approximation to (9.15) is

the explicit two -level scheme

n+l n~1 -1 n
uN - \JN = 20t o DCUN (9.16)

Thus, in the leapfrocg scheme

n n-1 -1 n
KN(At)uN = uy + 2AtC DCuN '
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80 EN is a two-level evolution operator since it depends on

both u:‘l and u;. The definitions of uytability, convergence,

and consistency given above extend easily to this case.

We shall show that (9.16) is strongly stable provided that

1
At < 3FTRN-I} (2.17)
79 show this we first recall from Sec. 6 that C is unitary
and D is skew-Heramitian. fTherefore, A = CCIDC is also skew-
Hermitian, and hence normal, so that

fia]] = 2m(N-1) .

Now we take the inner product of (9.16) with u§+] + ug-l
to get
n+l, 2 n-1,,2 n+l n-1 n
!l\.lN || - ||uN :l = 2AtRE(uN + uN I’ AUN) ’

. n+l n . .
since ué- and uy are real. Since A* = -7, we obtain

'lz - ZAtRe(u;+l

n _ n+l n n
UN = HUN ’= + IluNl ’ AuN)

n,, 2 n-1 _ n n-1. _ n-1
= ||uN|| + ||uN Il = 28tRe(uy, Aug ™) zu
so u; = ug . Schwarz' inequality implies that
n+l - n+l n
|Re (up ™™, AGRY < | [A]] lug™ [ | ]ug]| -
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so that if (9.17) is satisfied, i.e. At||A|: < l-¢ for some e > 0,
(Nl n , n+l
|28tRe (™, Aug) | < 281-e) || ||ug|| .

“sing this result,_ye obtain

n+l
e(]Jug 11 + llu,‘}llz) + (1-¢) (l|u:*1!| - :|ug||2)§ug.ug

(9.18)

0 .
Since}JN is 2 bounded function of N (pecause of the iritial
concitions) , we see that ||u§+lll is bounded {or all N and
h , proving strong stability.

Another way to prove that the leapfrog and Crank-Nicolson time
differencing schemes are strongly stable for (9.15) is to use a
modal analysis, which is justified because A is normal. Thus,
if ug is an eigenfunction of A with eigenvalue ) , the

Crank-Nicolson approximation to KN(At) is

a: l‘ -.l, o
KN(At)uN (1 + 2 ~At)/ (1 5 AAt) uy {9.19)

Since the eigenvalues A or C—IDC are all pure imaginary, it

follows that ||KN(At)i| = 1, so Crank-Nicolson differencing is

stable.

Still another time di“ferencing method fcr solution of (9.15)
is to use a Runge-XKutta scheme. It easily verified the first and
second-order Runje-Kutta methods are unstable unless At satisfies

conaitions that »*e much more regtrictive than (9.17). With the

first-order Euler method

n+l n n
“N -uN+AtAuN,

=177~

-y W b e gt b antn TS A m—



-~

stsbility rejuires that NZAt be bounded as At + 0 [because

IJKN(At)II- 1 + 0(N% at%] ; with the second-order scheme

~n+l/2 = ul
YN

4/3At be bounded as At -+ ). However,

stability requires that N
the third and fourth-order Runge-Kutta methods give conditional
stability restrictions l.ke (9.,17) which we w:1ll now derive.

The third-orier Runge-Kutta schemc may be written fo¥ a linear

equation like (9.}) "as

n+l _ : Y/ v 2 ; 3,.n  _ . n
uN = [I + AtA + 1/2(AtAY" + 1/6(AtA) ]uN = KN(ut)uN

(9.20)

Since KN(At) given by (9, 20) 1is rormal,

|k (at) || = max |1 + Abt + 1,208 2 + 17618t 3
x .

where the maximum is taken over all the eigenvalues of A.
eigenvalues of A are ik with [k| < 2n(N-1), so (9.6 ) is

satisfied provided that

At < ITN-D) (9.21)

Y
4

-178-



Thus, this method allows time steps that can be ¥3 times

larger than with the leapfrog scheme while maintaining stability.

However, if the operator A is complicated, the third-order

Runge-Kutta scheme requires about 3 times as much work as leap-

from at each time-ewep, 80 it is probably not competitive. e s
Similar analysis of the fourth-order Runge-Kutta scheme

gives the =tability condition

At < ﬁﬁﬁ__—ﬂ (9.22)

-

Thus time steps can be nearly three times larger than with
leapfrog steps. However, fourth-order Runge-Kutta differencing
requires about four times the work of leapfroy differencing, so
the scheme is probably not too useful unless very high accuracy
is desired.

Now we shall consider time-differencing methods for Fourier
series spectral approximations to the heat equation with pericdic

boundary cond. .ions:

u, = u (0 <x<l) (9. 23)

N (9.24)
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The matrix C.l DZC is necative definite. Because (9.19) still

holds and all eigenvalues A are negative, Crank-Nicolson time

differencing is unconditionally stable. On the other hand, it

is easy to show that leapfrog differencing is unconditionally
-1.2

unstable. In fact, if ug is an eigenfunction of C "D"C with

eigenvalue A < 0 then IIKN(At)nugli grows ljke

n
(-8t + /{+(AM:)2) -~ e MDbt) .o At + 0 for fixed ) and

: 2 2 . 2
nAt. Since max|A| = 47°(N~1)° grows like N° as N » =, —

IIKN(At)nugll cannot be hounded be a finite function cf naAt
for all N, proving unconditional instability.
Another way tn solve (9_,24) 1is to use a generalized fufort-

Frankel scheme

n+l n-1

u
N N _ ~=1.2_.n 2, n+l n n-1
TRE = C ™D Cun - YN (uN - ZuN + Uy )

(9.25)

If vy > w2 then this method is unconditionally stable
(Gottlieb & Gustaffson 1976).

Similarly, Euler time differencing of (9.24) is conditicnally
stable., Stability requires that At max|i| < 2 or At < (2n2(N»1)2]-1.
Higher-ovder Adams-Basliforth schemes have similar conditional

stability limits.

-180-



Time-differencing for mixed initial«boundary value problems

Some care is necessary in the formulation of time-
differencing methods for spectral approximations to mixed
initial-boundary value problems. The sensitivity of spectral
methods to the proper formulation of boundary conditions, -
as shown in Sects. 6-8, carries over to the formulation
of time-differencing methods for these approximations. For
example, for most mixed initial-boundary value problems leap-
frog time differercing is unconditionally unstable for spectral
approximations. Furthermore, explicit time integration methods
may be unduly restricted by conditional stability requirements
in spectral approximations. The origin of these severe
restrictions is the very high resolution of spectral methods
near boundaries. Thus, it is frequently necessary to combine
special kinds of implicit time-integration methods with spectral
approximations in order to maintain high accuracy at reasonable
computational cost. Several examples will be given later.

Let us bagin by studying time-differencing methods for
the Chebyshev-spectral approximation to the mixed initial-

boundary vaiue problem (8.1-3);

ut + ux :‘: 0 ('lix_f_ll- t>0), (9.27)
u(x,0) = £(x)  (-1<x<1), (9.28)
u(-1,t) =0 (t>0). (9.29)
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In Sec. 8, we proved that various semi-~discrete spectral
approximations to (9.27-29) are algebraically stable.

Let us first consider the leapfrog time-differencing

scheme

P gt . (5. 30)

where ug(x) is the time-discretized approximation to
uN(x,nAt), At is the time step; and the semi-  "screte
approximation is auN/Bt = Ly Uy

Tris scheme is unconditionally unstable for any At as N-ow.
" show this we recall that in Sec. B. we proved that the
cigenvalues of LN have negativz reai part (see Table 8.3)
and that the largest eigenvalue of LN has a negative real

part that orows like N2 as N+, Let us rewrite {9.30) -

in the 2 x 2 block—-matrix form

n+l n
uN 2 At LN 1 uN

= (9.31)
n n-1

If the eigenvalues of LN are deroted as My then the

eigenvalues of the matrix on the right in 9.31 are

2

(x) _ 2
‘= Py e/l 4 (At) ™ uy

(9.32)
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For fixad N and At+0,

~uNAt

AL e (1 + niatd)).
(9.33).
Thus
r. -y, nit
[?(N)] = -1" e N (1 +0(At)) (0<nAt<T,8t+0)
(9.34)
Since IIKN(At)“Ilzixé"I" and there are eigenvalues of

LN. with negative real part cf order Nz, no inequality of

the form (9.4) can be satisfied. Thus, leapfrog time
differencing or the Chehyshev approximations to (9.27-29)

is unconditionally unstable.

There are several conditionally stable explicit time-
differencing approximations that can be used with spectral
approximations to (9.27-29). Two examples are the Adams-

Basghforth scheme

uE*l = uf + %'Pt LY - % At L;'l (9. 35)

and the modifi;a.éuler scheme CoTe
ultl oGl e L uy (9.36a)
u§+1 =+ 3 at L, ub + 3 At L, wot (9.3€0)
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The modified Euler scheme {9.36)1is in practice stable provided

the stability condition

8

is satisfied. A s’nilar stebility condition holds for the
Adams-Bashforth scheme.

The fact that the stability limit in (9.37) depends
on 1/N2 rather than 1L/N  is not very surprising

because the Clebyshev cnllocation points cos mn/N

are svnaced by a distance of order l/Nz near thes boundaries.
Since the vave speed ir (9.27) is 1 the wave propagates from
ore grid noint to the next in a time of order l/N2 so time
steps must be smaller than this to maintain explicit stability.

Tre explicit stability restriction (9.37) for Chebyshev-~

spectrial rmethods with N polynomials should be contrasted with

the corresponding stability conditions for finite difZerence
approximatiors to (9.27-29), with N gridpoints uniior .y spaced

in the interval -l<x<1, the grid spacing is 2/N so the
Courant stability condition is At <2/N. As N+w, this

stability condition on finite difference schemes is nuch

waaker than the condition (9.37) on the spectral approximations.
A semi-implicit technique that permits stable time-differencing
vith spectral methods with a stability condition like that

of finite-difference schemes will be discussed later in this

section.
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In order tc prove that the modified Euler method (9.36)
is stable, we begin by noting that (9.36) is equivalent to the

second-order Taylor series method

2 1)
ot e e+ Fa0? ) o soy o) (9.38)

o el
- - - -

A sufficient condition for algebraic stability of (9.38) |is
the existence of positive-definite symmetric matrices Sy

such that

G. S._ G <$S {9.39%a)

and the condition aumber of SN satisfies

HsglHisyt ]l = omP)  (we) . (9. 390)

for some finite B . If (9.39) holc¢s then

T\ n n T, n-1 n-1
(Gy) ™ sy (Gy) ™ < (Gy) Sy (Gy) $ ..o <8y
or
-1/2. /2.41/2 \n o=1/2 S e
sy’ (eaPm/Am/2 ot st/2 ¢
Therefore,

1/2 (o \0 &-1/2
lsy/2 6" s5M2) <1,

-185-



80 that

0 -1/2 1/72 -1/2
Hugll = 1™ ugll<lIsg 211115y 2 o™ s/ 211

Y21 Nugl! = 0 8 11agll) (¥

|15y

To complete the stability proof we must investigate -,

under what conditions matrices S satisfying (9.39) exist.

N
One choice for Sy is just the Liapounov matrices of L.;
> . these matrices satisfy
Sy Ly + LS, = -1 (9.40)
N N LN N

It was shown in Sec.8 that the Liapounov matrices for spectral
approximations to (9.27-29) have algebraically bounded condition

number. Using (9.38) , we obtain

T

Sx

. .l ,2,.2 T 1 2 2
S, Gy = [T ~ At $ ALY ] Sy [THAtLHr(AE) © (L) 7]

N

&

T T
Gy Sy Gy = Sy * At (Ly Sy + Sy Ly)

~ oy %—ﬁt)z [(Lg)T Sy + ZL;E Sy Ly + Sy 2 - _—

2,TS L

1 3 T 2 2.7 2
+ 5 (At) [(LN) N N + Ly sN LN] +

)" 8y Ly -

1

4
2 (at) (L

N
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From (9.40), it follows that

2.7 T . _ .7
(Lg) " Sy + Ly S By = Ly
': T 2 _
e i R T e = =Ly
2.7 2 _ T
(L) Sg Ty + Ly Sy I = Iy Iy
so that

T C e L ) 2 .0
Gy Sy Oy = Sy = ALI - (At)% [L + Ly)

L. + % eyt w3HhTs 12

1 3 I
N M N N

-3 (at) Jg
Thus , (9.39a) is satisfied provi<ied that

fl:
—Ar (Lo 4+ L) < I

(9.41)

(9.42)

If (9.41-42) are satisfied then the modified Fuler methc. for

(9.27-29) is algebrzically stable.

At first, it ray appear that the stabilit

(9.42 ) is much more severe than the stability < .

(9.4f). In fact, we know from Sec. 8 that

- o(n2 - e
Hogll = oy, [lsyll =0 (New),

,’ ! ‘J-

1YY
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so that (9.4 2) seems to reguire that At=0(l/N4) a-

N+, However, the stability condition {9.42) is no
more rostrictiva than the stability condition (9.41,
To see this we nse (9.40) written in the form

-1 T=-1 .7

L LN + (LN) LN SN LN = -1

to obtain the representation [sec (5.,13)]

l(L'let] pILI ] dt
exp (L exp Ly .

|
n
j
O g

(9.43)

It may be shown that the norm of the inteyrand of (7.43)

O(Nz) and that the norm deciy)s

is 0(1l) as N » = for t

raridly to zero as t + «, Thereforco,

T 2
Ly Sy Lyl = 0 (%) (n»=) (9.44)

Lf.owing that the stability condition (9.42) is of the form

At = 0(1/N?%).
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Semi-implicit methods

When explicit time-stepping methods are used to solve

semi-discrete spectral equations for the hyperbolic problem

u ou _ _
5t t a(x) R 0 (-1l<x<1) (9.45)

with appropriate boundary conditions [that depend on the sign

of a(x)], there result stability conditions of the form

. 1 1l 1
At < min { ' ’ }  (9.46)
Mlam| © wlaen] VPRI

These stability limits can be derived heuristically from the

Courant stability condition

AX
eff (9.47)

At <
T Taggg]

e

where Aaff is the effective wave propagation speed in a
direction in which there is effective grid resolution Axeff'
Near the boundaries x=*1, the Chebyshev-spectral methods have
. = 3 o i = H i
resolution AX .. = 0(1/N“) as N+» while a_¢s a(zl); in

the interior of -1<x<1, Chebyshev series have effective resolution

Ax ee = 0( % ) as N+=» whiie the largest wave spped is -nax|a(x)]|.
Thus, (9.47) implies (9.46) for the Chebyshev-spectral methods.
The stability condition (9.46) 1is too severe for many

applications because it requires that At = 0(1/N2).
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In order to relax this severe constraint, we use a semi-implicit
method in which the propagation through the high-resolution boundary
is treated implicitly, but the propayation through the interior is
treated explicitly.

One possible semi-implicit zcheme is the following two-step
method . Let LN be the C ebyshev-spectral approximation to
-a (x) 5%- with appropriate boundary conditions applied, and
Lg, L. be the Chebyshev spectral approximations to the

N
constant coefficient wave operators - a(+1)3/3x, =-a(-1)2/ax,

respectively, again with appropriate boundary couditions applied.

A semi-implicit two-step scheme is given by

t i
N+r - D+ n 1 - - n
4y - dat Ly uy = ug o+ FAt (L - Ly) uy (9.48a)
A TR Nt ST TR AP (9.48b)
N TAE N N N EX s VS LY :

The scheme (9.48) is stable if the stability condition

1 (9.49)

is satisfied.

The condition (9.49) 1is sufficient to ensure stability,
but the semi-implicit scheme (9.48) may be stable even if

(9.49) is violated. If max|a(x)|<|a(l)] or maxja(x)|<]a(-1)],

-190-



T e,

(9.48) is usually unconditionally stable for sufficiently
large N (see Sec. 8 of Orszag 1974). The implementation
of (9.48) on a computer is straightforward and efficient; the
properties of Chebyshev polynomials summarized in the Appendix
show that the implicit equations (9.48) are essentially tridiagonal
matrix equations.
The reason that the semi-implicit method outlined abcve
does not have a stability restriction 1ike At = 0(1/N2) can be
Y and LD in succeeding

N N
half-time-steps, the explicit part of the calculation is gimilar

understood as follows. By subtracting L

to that in solving an equation of the form

au 2 au _
TR {(1-x") b(x) ix = 0 (9.50)
where the wave speed vanishes at x=:1. If b(x) =b, a

constant, the Chebyshev-tau equations for (9.50) are just

da 1

- 2 E; b [(n-1) aln—ll (n+1) a ] (v.51)
where Cy = 2 and c, = 1 for n>0. By Gerschgorin's theorem,
l|Lgi] for (9.51) satisfies

||LN|| = 0(bN) (N+w) , (9.52)

so the explicit time step restriction is At = 0(1/bN) as

N+,

-191-



We note that Chebyshev-spectral approximations to (9.50)
are stable when no boundary conditions are applied. 1In fact,
using Galerkin approximation and the Chebyshev inner product,

we obtain

ou 2 Ju

(4 5o + b(1-x)) =8y = 0.
80
2
L {11 /5_27 dx = -b [11 AxZ &’ ax
= -b fi xuN2 dx < |b] ;- -uNz S dx .
21 /I-x2 N -1 V1-x2
Therefore,

ager 112 < el®lt)u o ])2 .

Proving stability.
There are other attractive semi-implicit schemes for (9.45).
For example, suppose a{x) is one-signed, say a(x)>0, and let

a = maxa(x) . Define Lmax as the Chebyshev approximation to

max N
1 d . C ,
-3 A Tx with boundary conditions imposed at x = -1. A

semi-implicit Chebyshev spectral scheme for (9.45) 1is

n+l max n+l _ n _ ¢ max n \
uy -At LN uy ug ¢ At(LN Ly ) uy - (9.53}
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The scheme  (9.53)  is usually unconditionally stable and avoids

the severe time step restriction (9.46), 1t is also casy to

) e s . max . ) Ce s
implement etfficiently because Ly is a Chebyshev approximation to
a constant-cocftficient wave oporatorj

The same kind of trick stahilizes spectral methods tor non-

linear equations. For cxample, if we are solving the equation

A v
5t + 1 N 0

during a time interval in which u(x,t) 1is swmooth (no ghock waves),

then we may use the semi-implicit scheme

_3_\3 + ]u _ag = 1 u - __u_
st 2 max X €3 Yo u) ax

in which the terms on the left are treated implicitly in time,
while those on the right are treated coxplicitly. Here Uk
an estimate of the largest value of u(x,t). Similar scmi-implicit
methods are ecffective in eliminating (or at least relaxing) tirve-
step restrictions for finite~differonce methods., The key iden

is to recognize the source term of a numerical instability and then

to approximate it by a simple expression that can easily be treated

implicitly.

D. I{aidvgnol }1‘ pointed cut +that the semi-implicit scheme
(9.53) with L, replaced by a Chebyshev spectral apprcwiﬁ\ti\n
to L(bx+c)d/3%, whore bie = a(tl), coh = a(<1), is alse
stab}e under the weak restriction (9.49), Tho'ro;u}f;;q
implicit equations are still tridiagonal [seo (A.9),‘(A.]8)].

a
1
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Several other examples of semi-implicit methods should make
the general technique clear,  For the variable cocvificicont heat

cquation

u = k{x) u (-1.x.1)
t XX -
wiith suitable boundary conditions at x =¢1 and  k({x)>0,

Chebyshev-spectral methiods give explicit time-step stability

conditions of the form

At < min ——--}——M—d— , - i 5 R (9.54)
- k(-1)N K(1)N N™ max k (x)
|x1<1
The very severe time step vesiriction that At - O(l/Nd) as

¥ is due to the high vesolution ¢f Chebyshev scries near the
boundarics x = +1. To avoid this probloem we can use a semi-inplicit

mcthod., Let LN be the Chebyshev-spectral approximation to

2 (& .' . . 13
k(x)32/3x and let ng\ be the Chebyrhov-spectral approxXimailon
to 1k 32/8x2 where k = max k(x) . The semi-iaplicit

2 max max

schome (9.53) with L:ax

defined in this way

scoems to be unconditionally stable (Orsiag 1974)  and cortainly

does not hav> any stability restrictions of the form (9.%4).
Finally, we comment on the need for implicit or semi-implicit

schemes in malti-dimensional probPlems. Tf we wish to solve the

Navier-Stokes cquations

-»

P h Va=-vwp+w?i

t (9.55)
Vo=
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for incompressible fluid flow, the treatment oi the various
terms should guided closelv by the type of stability restrictions
they impose.

If v= 0 then we need only consider the types of stability
restrictions irduced by the advective term -u.Vu and by the
pressure term -Vp; we will not discuss the effect of the
pressure because it is closely connected to the incompressiblity
condition V.u=0 and is not relevant to the semi-implicit ideas
discussed here. At a boundary of the flow, it is app:-opriate to
specify boundary conditions on W.n where A is the normal
to the boundary. If the boundary is solid and stationary, then
G.K-O and we are in a situation similar to that modelled by
(9.50). The effective convective speed normil to the boundary
vanishes, so spectral methods exhibit no unusual time stepping
restrictions. However, if fluid is being blown into or sucked
out of the boundary so 3.;;£0, then semi-implicit methods must
be applied to avoid unreasonably restrictive conditions like
(9.46) on the time steps.

If v>0, then the viscous terms in the Navier-Stokes equations
should be treated implicitly to avoid unreasonable time step
restrictions due to the high resolution of spectral approximations

nea: the boundary.
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10. Efficient Implementation of Spectral Methods

There are two aspects of the efficient implementation of
spectral methods that we discuss here: (i) evaluation of
derivatives; (ii) evaluation of nonlinear and nonconstant
coefficient terms; (iii) roundoff errors. More details on

these matters are given elsewhere (see the keferences) .

Evaluation of derjivatives

An efficient procedure to obtain the expansion ccefficients
of derivatives nf a function f(x) in terms of the expansion

coefficients of f(x) is to use recurrence relations. For

example, to evaluate the term

?

s, = pa

n p=n+l e
p+n odd

that appears in the Chebyshev equations (2.11), (2.19), and

(2.32) ,we use the recurrence

S = § (0<n<N-_) (10.1)

n n+2

+ (n+1)an+l

with SN = SN+1 = 0. In this way, CH is evaluated for all n

using only N arithmetic operations. The existence of the recurrence

relation (10.1) is ensured by the recurrence property

T' T'
o N+l _ “n-1
2Tn n+l n-1 (n>1)
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satistied by the Chebyshev polynomials. Similarly, it is possible
to derive recurrence relations to evaluate efficiently the
coefficients of arbitrary derivatives of functions expanded in

Chebyshev and other classical polynomial expansions.

Evaluation of nonlinear and nonconstant coefficeint terms

The most efficient way to evaluate nonlinear and general
nonconstant terms in spectral approximations is to apply transform
nietl.ods. The key idea is to apply fast Fourier transférms and other
transforms to transform efficiently between spectral representations
of a function f(x) and physical-space representations of f(x).
With Chebyshev polynomial expansions, fast Fourier transforms permit
the evaluation of arbitrary nonlinear and nonconstant coefficients
terms in order N log N arithmetic operations.

In general, collocation methods give approximations to nonlinear
and nonconstant c¢ 2fficient problems that can be more efficiently
implemented than Galerkin or tau approximations, Collocation is
reconmended for these problems. For example, the solution of the

hyperbolic problcm

Ju u+x Ju _
sg toe 3% = f(x,t) (-1 <x<1, t>0), (10.2)
U("l,t) = 0’

would be difficult using Galerkin or tau approximation but is

straightforward using collocation methods.

107,
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Let us explain how to march the solution to (10,2) forward
by onec time step efficiently using Chel - ~ollocation. We introduc. :
the N+1 collocaticon points Xj = co.. 1j/N = 0,...,N)
and represent the current solution uj as
N n
u, = z a, cos ~ﬁl . (10.3)
J n=0 :
Then we invert (10.3) by the fast Fourier transform to
obtain a, for n=0,1,...,N and calculate
(v _ . -
a, = 25 /¢ .
by (10.1). Next we evaluate
N .
%g = b agl) cos 331 (10.2) ‘
X=X, n=:0 "
J :
usiny the fast Fourier transform. Finally, we evaluate
exp(uj+xj)(du/3x)j at each of the 'grid' poirts X5
and use the rcsults to march the solution forward to the next
time step.
For quadratically honliincar differential equations, like the :
Navier-Stokes equations of incompressible fluid dynamics, Galerkin ;
and tau approximations are workable but normally require at least :



twice the computational work of collocation approximation. However,
Galerkin approximation is sometimes very attractive becauge it gives
approximations that are conservative and have no so-called aliasing
errors (see Orszag 1971c, 1972 for a more complete discussion of
these properties).

Roundoff Errors

Transform methods normally give no appreciable amplification
of roundoff errors. In fact, the evaluation of conrolution-like
sums using fast Fourier transforms often gives results with much
smaller roundoff error than would be obtained if the convolution
sums were evaluated directly.

On the other hand, the use of recurrence relations to evaluate
derivatives can sometimes be a source of large r undoff errors.

In this case , it is often best to convert Jroblem being solved
into a new one that is numerically well-con oned. An example of

svch a transformation is given below.

Example 10.1: Solution of y"-ky=f(x) by Chebyshev polynomials

The boundary-value problem
y" - ky = f(x) -1<x<1 (10.2)
y(-1) = A, y(1) = B

can be solved using a Chebyshev-tau approximation. The
resulting approximation yN(x) is given by (see Appendix)

N
Yy (%) =n£0 a_ T (x) (10.3)
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L I p(pz-nz) a - ka =1f (0<niN-2) (1C.4)

®n p=n+2 P
P+n even
N N
] 1™ a =a, ] a =38, (10.5)
n=0 r n=0 n

where {fn} are the Chebyshev series coefficients of £(x).
The solution of the system (1(.4-5) for the Chebyshev

coefficients {a } may be done in several ways. One Obvious
way to do this effxcxently is to write

_ (1) . (2) (3)
a, = ag + aap + Ban . {(10.6)
(1) N (1) _ _ (1) _
Here an satisfies ay = aN_1 = v and
1 3 1) (D)
= I  pp*n )-‘ = £ (0 N-2),
n p=n+2 n n
. (2) . (2) (2)
while an satisfius aN =1, aN-l = 0 and
1 N 2 (2) (2)
= 7 p(p°-n )a - ka =0 (0<ncN-2),
Cn p=n+2 . .
(3) . o (3) _ (2)_
and a, satisfies ay = 0, ay-1< 1, and
1 N (3) _,_(3)
= ! p(p2-n )a - ka 7' =0 (0<ncN-2).
n p=n+2
p+n even

1 2 3
aé )' aé ) , aé ) .
using roughly N operations by backwards recurrence. When

Each of the solutions may be found

the constants o and B8 in (10.6) are chosen so that the
boundary conditions (10.5) are satisfied, a, given by
(10..) satisfies (10.4-5).

The above procedure is efficient but it is not usually
numerically stable. Roundoff errors mul!iply rapidly so that
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a  may have little significance.
A better procedure is to first convert (10.4~5) into a
nearly tridiagonal system of equations. It may be shown that

(10.4-5) is equivalent to the system

: ke ke ke
‘ —n-2 n+2 n+4
) a _, - (1 + ) a_ + a
‘ 4n(n-1) P2 2(n2-1) 0~ IO “n+2
(

c £ e 4 e £

= _0=2"n=2 _ “"n+2 n n+d n+2
41 (n-1) 2 (1) Y annsn  (2<n<N) (10.7)

with the boundary conditions (10.5) still applied. Here
c°=2, cn=1 for n>0 and en=1 for n<N, en=0 for n>N. The
system (10.5), (10.7) may be solved by standard banded matrix
(; techniques in roughly the number of operations required to
solve pentadiagonal systems of equations. The equations in the
form (10.7) are essentially diagonally dominant so no appreciable
v accumulation of roundoff errors occuis. This technique for
‘¢ solution of (10.2) is very useful in implementing implicit
spectral methods for dissipative terms and for solving Poisson-
like equations (see Sec. 14).
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11. Numerical Results for Hyperbolic Problems

We begin by presenting numerical results for spectral approximations

to the problem

u +u =20 (-1<x<1,t>0) (11.1)
t X -

u(x,0) = 0 ,u(-1,t) = g(t), (11.2)

whose exact solution is

glt = x = 1) (x<t-1)

u(x,t) =
0 (x>t-1). (11.3)

If g(t) is smooth, u(x,t) is smooth for |x]<1 when t>2; when
t<2, u(x,t) is not smooth at x=t-1.

In Sec. 2 we explained how to obtain semi-discrete Galerkin,
tau, and collocation approximation to (11.1-2) using either
Chebyshev or Legendre polynomial expansions. 1In Sec. 9, we showed
that either Adams-Bashforth or modified Euler time differencing gives
stable and convergent results for these spectral approximations. The
numerical results cited in this Section were obtained by Adams-Bashforth
time-differencing; time steps were chosen small enough that time-
ditferencing errors are negligible.

Comparison of Chebyshev and Legendre Polynomial Spectral Methods for

Smooth Solutions

When g(t) =-sinMnt, the solution (11.3) has M complete
waves wjithan ixlil when t>2, As argued in Sec. 3, we expect that
accurate results will be obtained only if N>Mn  polynomials are

retained.
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In Fig. 11.1, we plot the root-mean-square error for |x|<1l

averaged in time for 4<t<4.4 obtained using the Chebyshev
approximations to (11.1-2) when g(t) = -ginSvt ., In this time
interval, u(x,t) is smooth for lei;. Observe that the errors
decrease exponentially fast when N>5n. Also observe that when the
spectral approximatinns are relatively inaccurate (errors greater
than roughly 108), Galerkin approximation is most accurate followed
by collocation and then tau. On the other hand, when the spectral
approximations are very accurate (errors less than roughly 0.5%),
tau approximation is most accurate followed by Galerkin and
collocation. This behavior seems typical. Also observe from

Fig. 11.1 that all three spectral approximations are nearly as
accurate as the best (rms) Chebyshev apprnximation; in fact, tau
approximation with N+1 polynomials is usually more accurate than
the best approximation with N polynomials. Here the best (rms)
Chebyshev approximation is that Nth degree polynomial that
x2)-1/2

1l
. . 2
minimizes [ lu“ - u]® - dx.
-1

In Fig. 11.2, we make similar compariscns of the error in
spectral approximations using Legendre series for the problem
(10.1-2) with g(t) = -sin57mt . Here too the errors decrease
exponentially fast when N257. Again, tau approximation is more
accurate than Galerkin when both are very accurate, while it is
less accurate when both are relatively inaccurate. Also, tau
approximation with N+1 polynomials and Galerkin approximations
with N+2 polynomials are more accurate than the best Legendre
approximation with N polynomials. Here the best Legendre

approximation is that Nth degree polynomial that minimizes

1l
/ oy - u|2dx.

-1
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are averaged in
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(3.41) with M =
that the errors

1-2) with g(t) = =sin 5nt, The errors
time over the interval 4<t<4.4; the exact
= gin Sw(x+1l-t) is smooth throughout this
The best (rms) approximation is given by
S, a = 1-t truncated after TN(x). Observe
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In Fig. 11.3-4 we plot the error en(x,t) in the best
Chebyshev polynomial approximation to sin5m(x+l-t) at t=4.
Observe that eN(x,t) is nearly an 'equal ripple' approximation
(Acton 1970) so uN(x,t) is nearly a minimax apprcximation.

In Figs. 11.5-8 we plot the errors eN(x,t) versus Xx
at t=4 obtained by numerical solution of Chebyshev spectral
approximations to (11.1-2). As N increases, the tau method
gives the closest approximation to an equal-ripple error, which
is consistent with the result shown in Fig. 11.1 that tau approximation
§!vés the smallest errors at high accuracy.

In Figs. 11.9-10, we plot the error in the best
Legendre polynomial approximation to sinSm(x +l1-t) at t=4.
Observe that eN(x,t) has large errors near the boundaries
x =*1, By comparing the results plotted in Figs. 11.3-4 with
those plotted ir Figs. 11.9-10, we conclude that the best Chebyshev
polynomial approxiwation is closer to an equal ripple approximation
than is the best Legendre polynomial approximation. Even though the
best Legendre polynomial zpproximation to u(x,t) gives the smallest
mean-square errcr to u, the best Chebyshev polynomial approximation
usually gives a smaller value of the maximum pointwise (L) error.
The large errors of the best Legendre approximation are concentrated
near the boundaries x=t1, while the Chebyshev wuvight function

2,-1/2

(1-x") tends to distribute the errors in the best Chebyshev

approximation uniformly throughout -1l<x<1.
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In Fics. 11.11-13, we plot the errors eN(x,t) at t=4
obtained by numerical solution of Legendre spectral approximations
to (11.1-2). As for Chebyshev-spectral approximations, the error
in Legendre-tau approximation is smaller than that in Legendre-
Galerkin approximation.

One important feature of Legendre-spectral approximation is
that the spatjal distribution of the error in tau and Galerkin
approximation plotted in Figs. 11.11-13 differs markedly from
the spatial distribution of the error in the best Legendre
polynomial approximations plotted in Figs. 11.9-1U. The boundary
errors in the best L2 approximation are relatively large while
the boundary errors are relatively smaller in the spectral
approximations.

The boundary (endpoint) errors in Legendre-tau approximation
exhibit 'superconvergence' in the sense that they go to zerc much
faster than either the L, - errors or the L, and endpoint errors
of Chebyshev-tau approximation. This fact is illustrated in Fig.1ll1.14
where we plot the L2 and erdpoint errors of Legendre-tau and
Chebyshev-t1u spectral approximations to the solution of (11.1-2)
with g(t) =-sin5nrt . Here the endpoint error is IuN(+1,t)-u(+1,tH
at the outflow boundary x= +1.

Several features of the results plotted in Fig. 11.14 deserve
comment . First, although the maximum error of the best N-term
Chebyshev polynomial approximation is smaller than the maximum
error of the best Legendre polynomial approximation to u(x,t) by
roughly a factor 1/v/N [see (3.38) and (3.39)], the maximum error

of the Legendre-tau approximation is smaller than the maximum error
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Fig. 11.14 A comparison of the Chebyshev-tau and Legendre-
tau L, and endpoint (x = +1) errors for the solution to (11.1-2)
with a(t) = -gin 5nt.
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of the Chebyshev-tau approrximation. Second, the endpoint error at
x=1 of the Legendre-tau approximation goes to zero like the square
of the endpoint error of the Chebyshev-tau approximation. This
remarkable behavior of endpoint errors in Legendre-polynomial
approximations was found originally by Lanczos in a slightly
different context [Lanczos 1966 (p. 156), 1973].

A mathematical analysis of the errors of spectral approximations
to (11.1-2) has been given recently by Dubiner (1977). Dubiner's
results include: (a) asymptotic estimates of the errors incurred
by the various spectral methods, including error oscillations when
the solution is smocth; (b, a complete boundary layer description
of the decay of large errors due to discontinuities after the
discontinuities propagate out of the computational domain; (c)
analysis of the behavior of the tau-function 1t1(t) in (2.34). CDubiner
has analyzed a variety of spectral methods for (11.1~2) based on
expansions in general Jacobi polynomials. His ingenious analyses
of tau methods should permit more complete analysis of these
methods than possible using earlier a posteriori analysis (see Fox
& Parker 1968 for examples of a posteriori error analysis of tau
methods) .

Mesh Refinement

Sometimes it is useful to split up a domain into several
subdomains and then use numerical methods of different spatial
resolution in each. For example, in limited-area numerical weather
forecasting near a metropolitan area, it may be desirable to heve
much finer resolution in a small region than is practical globally.

One way to do this is to solve the problem separately on each

-220-
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of aeveral subdormains and then to match the numerical solutions

80 obtained across subdomain boundaries. As a model of this

Procedure we consider the problem

u, + u, = 0 (-lcx<1, t>0) (11.4a)
u(-1,t) = g(t), (11.4b)

= ( {11.5a)
Ve + Y 0 (1<x<3,t>0)

v(l+,t) = u(l-,t). (11.5b)

With finite difference methods, the accurate solution of the coupled
system (11.4.5) using different grids for -1<x<1 than for

1<x<3 may be troublesome. Inaccurate results or even numerical

instabilities can result from the matching (Browning, Kreiss & Oliger

1973). Because grids with different grid separations have different
dispersion characteristics for waves propagating on the grid,
waves can reflect from the boundary at x=1 and cause large
errors.

Spectral methods are attractive for the solution of mesh
refinement problems like (11.4-5) Le- 1se they give small endpoint
errors. For example, the Chebyshev-tau apprcximation to (11.4-5)
with N+l polynomials to represent the soluticn for -1<x<1 and

M+l polynomials for 1<x<3 1is given by

N
uy(x,t) = Zo a (t) T (x)  (-1<x<l) (11.6)
n=
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v (11.7)

vy (x,t) = mz b, (t) Ty (x-2) (1<x<3)
d N
Pn_ 2 ) p a {0<n<N-1) (11.%)
de “n p=n+l P
p+n odd
db N
_m__2 pb (0<m<M-1) (11.9)
dt c P - =
a p=m+l
p+m odd
N n
I (-1) a = g(t) (11.10)
n=0
7 " 3

It may easily be shown that if g(t) is smooth, the solution to
(11.6-11) converges tc the solution of (11.4-5) throughout

-1<x<3 faster than any finite power 1/N or 1/M as N, M+x,
The solutions for =-1<x<1 and 1l¢x<3 match without the

necessity of imposing any matching conditions in addition to
(11.5p). Because no spurious downstream boundary conditions
are applied at x=+1 on the wave propagating in the interval

-1<x<l, there are no reflected waves.
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One more example of a refined mesh spectral calculation

is instructive. Consider the heat equation problem

3 32
5% =V —% -1<x<1 (11.12a)
ax
v 32
v _,eVv 1<x<3 (11.12b)
ot 2 —=
ox
u{=1,t) = £(t), v(3,t)=g(t) (11.12c¢)
- = g_\.l. - = -a—v—
u(ls t) v( 1+,t), 5% (1-,t) T (1+,t) (11.124)

where (11.124) follows by requiring continuity of tempera.ure and

heat flux across the boundary at x=1. A Chebyshev~-tau apprsximatinn

to (11.12) is given by

N

ul(x,t) = I a (£)T (x) (-1<x<1) (11.13a)
n=0 n
M

vix, t) =7‘.Z.3 bm(t)Tm(x—Z) (1<x<3) (11.13b)
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Ve

da N

R=t p(pz-nz) a_ (0gngN-2) 11.13c)
Tt Cn p.n+2 p
p+n even
db 2 2
“a? - & rameg PIPT-RO)DY (0<pcM-2) (11.134)
M p+m odd
N n M
J (1) a =f£(t), ] b =gl(t) (11.13e)
n=0 n m=0
N M N M
F oa = ~\1™_, } nla = - ) (-1)"m%p_.
n=0 " m=0 ' h=o n m=0 m
(11.13f)

It may be shown as in Example 7.1(v) that this approximation is

semi-bounded and hence stable and convergent.

Discontinuities

When t<2, the sclution (11.3) to (11.1-2) is not
smooth at x=t-1; if g(t) = sinMwt, the solution has a
discontinuous derivative. This discontinuity seriously degrades

the rate of convergence of spectral approximations near the
discontinuity. Nevertheless, spectral approximations are still
normally much more accurate than finite-difference approximations

to the same problem. Orszag & Jayne (1974) give comparisons

betweon finite-difference and spectral approximations to
discontinuous solutions; in particular, they argue that if the

pth derivative of the solution is discontinuwous, the rate of
vonvergence of Chebyshev-spectral approximations to (11.1-3) for
t<2 is of order 1/NP as N-»~. Dubiner (1977) has given a detailed

asymptotic analysis of this problem. His results include detailed

C =224~
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behavior of the error for all x and t and are in good agreement
with numerical solutions.

One of the attractive features of spectral methods for problems
with discontinuities is that the region of large errors is more
localized near the discontinuity than in finite-difference methods.
Thus, it should be possible to eliminate oscillations near the
discontinuity using less dissipation than is required when finite
difference methods are used. A comparison of the error in Chebyshev-
tau and seconé and fourth-order solutions of (11.1-2) for t<2 is
given in Fig. 11.15.

Another interesting way to use spectral methods for problems
with discontinuous solutions has been suggested by Boris & Book
(1976) . The "optimal flux-~corrected transport" approximation
gives good resolution of discontinuitie. without introduction of
unphysical numerical oscillations near the discontinuity. The idea
is to add in an ar*ificial diffusion to smooth the discontinuity and
then to 'anti-diffuse' the resulting solution in such a way that no

new oscillations or maxima/minima are produced.

Comparison with Finite Difference Methods

Finite-difference approximations to (11.1-2) must be
formulated carefully near the boundaries x =t 1. For example,

the fourth-order semi-discrete approximation

du 8(u -u y=u +u
? #1 "j-1 j+2 "§-2 _

X

where u

3

because u(~-1-Ax,t), u(l+Ax,t), u{l+2Ax,t) all lie outside the

(t) = u(jax,t), must be modified at x=-1+Ax, 1-4x,1

-225-
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computational domain -1<x<1. Kreiss & Cliger (1973) discuss
methods to formulate difference approximations at these grid
points. However, it is not known how to formulate appropriate
'boundary' condit ons for arbitrary order difference schemes.
This difficulty is an artifact of difference methods; a fourth-
order difference quation requires 4'boundary' conditions while
only 1 condition (11.2) is properly imposed on the first-order
differential equation (1l1l.1l).

On the other hand, properly formulated spectral methods
require no 'spurrous' boundary conditions. 1Indeed, the imposition
of a spurious boundary condition on a spectral appro.imation to
(11.1), like su/9x = 0 at X =+1, will induce an unconditional
instability (see Sects. 8,12). The mathematics of spectral
approximations follows closely the mathematics of the differential
eguaticon being solved.

Spectral approximations also require considerably fewer degrees
of freedo.n to achieve accurate results than are required by
difference methods. A comparison for the problem (11.1~2) is
given in Table 11.1 for late times at which the solution is smooth.

In Figs. 11.15-19 we show three-dimensional perspective plots
of the solution to a simple two-dimensional hyperbolic problem with

periodic boundary conditions

aA(prpt) - BA(X, It) BA(X. 't) =
RULV,E) oy BONE) 2Rl L (11.14)

-227~-
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Table 11.1

Second-order Fourth-orde: Chebyskhev-taun ]
N M 32 N M c4 N M €.

-— -

B 40 2 0.1 20 2 0.04 16 4 0.08
80 2 0.03 39 2 0.008 20 . 0.001

160 2 0.008 a0 2 0.002 28 8 n.2
40 a 1. 49 4 0.07 32 8 0 008 |

80 4 0.2 80 4 0.005 42 12 0.2

} 160 4 0.06 160 4 0.0003 46 12 0.02
|
|

Table 11.1. L, (rms) errors for the solution of (11.1-2) with

g(t) = siuMrnt. The errors listed are measured at t=f when the
solution (11.3) is smooth. Time differencing errors are negligible
and N is the number of grid points or Chebyshev polynomials.
Observe that to achieve a 1% error, the second-order method requires
N/M240, the fourth-order method requires N/M2>15, while the

Chebyshev-tau method requires N/Maw.
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with

A(x:2w,yt2n,t) = A(x,y.,t).

The solution to (11.14) is constant along the characteristics
x+iy= (x0 + iyo)eit. Therefore, A(x,y,2nr)= A(x,y,0) so

the solution should keep A unchanged after a time 2x. 1In

Fig. 11.16, we plot the initial conditions used for the calculation
whose results are plotted in Figs. 11.17-19. 1In Fig. 11.17 we plot
the results at t=27 of a second-order centered space difference
scheme; in Fig. 11.18 we plot the results of a fourth-order scheme
and in Fig. 11.19 we plot the results of a spectral calculation
using the Fourier expansion

ikxt+ipy

A(x,y.t) =} a(k,p,t)e .

|k]<K Ip{gP
All three calculations used the same number of degrees cf freedom

but the differences in accuracy are striking. The Fourier-spectral
method works well even though the convecting velocit; (-y,x) in
(11.14) has jump discontinuities at x=%27, y=:2n. The dominant

error in all three calculations originates from the ‘corners' of

the initial A(x,y,0) distribution; thus error appears as a large
lagging phase error ig the finite difference snlutions which explanins

the 'wakes' of large errors following the remnants of A(x,y,27).

Higher-Order Wave Equations

T.ie mixed initial-boundary value

2 2
ca 33 (-lex<l,>0) (11.15)
at ax

‘=229~
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11.18
centered difference scheme nn a 64 x 64 qrid.
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u(+l,t) =0 (11.16)

u(x,0) = £(x), 3¢ (1,00 = g(x) (11.17)
is well posed. Legendre polynomial solution of (11.15-17) is
semi~-bounded and, hence stable (see Sec. 7). However, we have not
yet been able to prove that Chebyshev solution of this problem is
ever algebraically stable. The techniques of Sec. 8 prove that

if the boundary conditions (l11.16) are replaced by the characteristic

conditions

du(-1,¢) , du(-1,¢) . o, 2ull,t) _ duld,t) _ g
At 3t at ot

the scheme is algebraically stable. However, we have not yet
been able to prove this res.it for (11.16). However, it is
reassuring to note that we have solved the Cheybshev-spectral
approximations to (11.15-17) and find no evidence of lack of
convergence. Indeed, the Chebyshev methods work just as well as

they do for (11.1-2). Thus, it is not the spectral methods that
run into difficulty on higher-order equations, but just our

methods of analysis.
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12. Advective-Diffusion Equation

In this section, we consider spectral methods for the

advective-diffusion ('linearized Burgers') equation

2

32{§LEL oyl ) 38 eyt (-1 < x < 1) (12.1)
t Ix ;;7 - -

u(-1,¢8) = 0, u(l,t) = 0 (12.2)

u(x,0) = g(x) (12.3)

Eq. (12.1) is parabolic so boundary conditions should be applied
at both x = -1 and x = +1 . When v 1is small, the boundary
condition applied at x = +1 (assuming U > 0) has an interesting
effect on the stability of the spectral methods.

To begin, we remark that the analyses of Sects. 7-8 can be
extended to show that, a N + », N-term Legendie and Chebyshev
approximations to (12.1~-3) are stable and convergent.

For example, Chebyshev-Galerkin approximation is stable

because (12.1-2) and (7.3) imply that

1 1 2

1 2 . 2
d u u - u
azf_ _.deiIUIf 72 “J_lmdx

-1 (1-x

| Y1-v/10 uZ
< |u J " —373 dx
- -/I-v/U0 (1-x%)
2 1 2
< %T J u dx (12.4)
=1 Si-x

so the apﬁroximation is semi-bounded.
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However, for finite N, there may be difficulty integrating

the resulting spectral equations. With Legendre polynomials,

*
Galerkin approximation Ly to (12.1-3) satisfies Ly + LN < ¢

so there is no difficulty with time integrations (although the

solution may not be accurate unless N is large enough.

On the other hand, Chehyshev-spectral solution of (12.1-3)

encounters the following curious behavior when v is small.

If Vv/U is small and N is not too large, the Chebyshev-spectral

approximations Ly to (12.1-3) have eigenvalues with pcsitive

real parts. In Table 12.1, we list values of Norit for various

values of Vv/U; for N < NCrit » Ly for Chebyshev-tau

approximation to (12.1--3) has eigenvalues with positive real
parts. Since these eigenvalues may have moderately large real
parts [they can be as large as 02/2v by (12.4)], there may
pe rapid growth of errors and numerical solution of the
Chebyshev-spectral equations may appear unstable and divergent.

For N> N » there are no eigenvalues of L.N with positive

crit
real parts so the spectral equations are stable.

The origin of this temporal instability is the outflow
boundary layer at x = %1 ; when U > 0, the solution to
(12.1-3) develops a region of rapid change of width roughly
v/U near x = +1 as t increases. Since roughly 3(U/v)1/2
Chebyshev polynomials are required to resolve a boundary layer

of width v/U [see (3.50)], we expect that Nepit ¥ .‘-.(U/\))l/2

so vNérit/Il# 9 . In fact, as shown in Table 12.1, the
criterion is actually vNirit/U % 4. ([Since the Chebyshev norm

of exp(-Utd/3x) 1is roughly Nl/4 (see Sec. 8), we expect

that the proper scaling of Ncrit is better represented as

7/4 )
“Nciit/u £ 1.3. As shown in Table 12.1, this modified scaling is

more nearly satisfied for the range of \Y considered. )
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TABLE 12.1

o —

v/u Nerit W2/ U "“Zzﬁ /Y
1ox 102 s 2z 1.14
2.5 x 1073 35 3.06 1.26
1.0 x 1073 61 3.72 1.33
6.0 x 10”4 81 3.94 1.31
| 4.0 x 1074 101 4.08 1.29

Table 12,1 Critical values N of the number of Chebyshev

crit
polynomials necessary that the tau approximation to the operator

-Udu/3x + vazu/ax2 with u(:l) = 0 have no eigenvalue with

positive real parts. Also listed are the inverse 'grid Reynolds

2 7/4
crit crit/U

number' VN /U and the parameter VN .
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If Chebyshev-spectral approximations to (12.1-3) are
solved using fractional time-step methods, the temporal
instability for N < Ncrit appears in a unique way. Define
the operator AN as an N-mode Chebyshev approximation to the
operator -Udu/3dx with the boundary condition wu(-1l) =0
and the operator BN as an N-mode Chebyshev approximation
to the operator vazu/ax2 with u(:l) = 0. Then the
evolution operator of (12.1-2) is exp[(AN+BN)t] so a
fractional step method involves the splitting

BuN/at = aluN/at + aZuN/at where
aluN/at = ANuN ' azuN/Bt = BNuN .

For any values of v and U > 0, the fractional step

. . . 1/4
3,uy/?t is algebraically stable since || exp ANt||= 0(N / )
(see Sec. 8), while the fractional step azuN/at is stable
since [|exp BNtH < 1 (see Sec. 7). Nevertheless,
Hexp[(AN+BN)t]|| can grow rapidly with t. The reason is

that AN and BN do not commute so it is not true that
llexpl(ag+B tl]l < llexp Agtll |lexp Byt|l .

The Lie formula (5.8) does ensure that

llexpl(Ay#B )t} < 1lim Hexp(ANt/n)|P‘ Hexp(BNt/an.

n-—+w
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However, as n =+ »,
“exp(ANt/n)ll -1 ~ CNzt/n
with C > 0 (see Sec. 8) so
]lexp(ANt/n)Hn n exp(cNZt) >> 1 (n + ®)

Therefore the Lie formula gives only the very weak upper bound
2
llexpl(ag+B 1]l < exp(cN®e) .

In summary, Chebyshev-spectral approximations to (12.1-3)
give fractional step methods cuach that each fractional step
is algebraically stable vhile the total step is unstable

urlces N > N

crit
If the boun.ary conditions (12.2) are replaced by

u(=1,t) = 0, (+1,t) = 0 (12.4)

>
x|

when U > 0, the criterion for temporal stability is relaxed
significantly. As shown in Table 12.2, the value of vNZrit/U
is decreased to roughly 1-.-6. However, the growing modes that

appear when N < N are much tamer than those that appear

crit
when the boundary condition u(+l,t) = 0 is applied, so
accurate time integrations can still be obtained when

WN2/U % 0.01 (see Haidvogel 1977).
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TABLE 12.2

7/4 |
v/U Ncrit vNcrit/U
2.5 x 1073 21 0.52
-3
1.0 x 10 37 0.56
6.0 x 10”4 49 0.54
-4
4.0 x 10 61 0.53
—4 \
2.0 x 10 89 0.52 l

Table 12.2. Critical values N of the number of

crit
Chebyshev polynomials necessary that the tau approxima-

tior to the operator -Udu/3x + vazu/axz with
u(-1) = 0, au(+1l)/9x = 0 and U > 0 have no

eigenvalues with positive real parts. The parameter

7/4

VNcrit

/U 1s also listed.
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13. Models of Incompressible Fluid Dynamics

The Stokes equations for low Reynolds number, {wo-

dimensional incompressible flow are

83 2+
3T % OC Vp + v, (13.1)
v =0 ,

where v is the velocity field, p is the pressure, and v is
the kinematic viscosity. With the boundary conditions that
v =20 on rigid stationary boundaries, the problem (13.1) is
well posed for any v > 0. An equivalent formulation is given

by the vorticity-streamfunction equations

g‘% =\)V2C,
2 (13.2)
T = Vg,
obtained by taking the curl of the Stokes equations (13.1). Here
v is the streamfunction defined by V = (-3y/dy,3y/9x) and ¢
is the vorticity.

A one-dimensional model of (13,.2) is

2
gSt-=v-z—-§- (-1 <x <1, t>0), (13.3)
X
2
9
= (-1l < x<1). (13.4)
¢ = X% croxc
On stationary rigid walls, the boundary conditions for 3-4) are
vix,t) = wx(x,t) =0 (x=*1). (13.5)

There is one subtlety in the application of spectral methods
to (13.3-5) that does not appear directly when the primitive
equations (13.1) are used. It is necessary to tse some care
to avoid unconditional numerical instability with the Chebyshev-

tau method.
=241~
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The most obvious way to use the tau method to solve

PPV

(13.3-5) is to 3ubstitute (12.4) into (13 .3) and solve

wxxt = vwxxxx (<1 <x <1, t > 0) (15.6)

by expanaing y{(x,t) in tha Chebyshev series
N
vix,t) == Zan(t)'rn(x) . (13.7)
n=0
Denoting by aéq) the Chebyshev expansion coefficients of aqw/axq

(see A.20), the tau equatvions for (13.5-6) are

(2)
dan (4)
—— = A (0 <n<WN-4, t>0), (13.8)
. N M
¥ I 1" = [ (1% = 0. (13.9)
n=0 r.=0

Uafortunateiy, this method for solution of (13.3-5) is
uncondi cionally unstable as N + », In Table 13.1, we list

the Largest positive eigenvalue xmax of (13.8~9); there is

a solation of (13.8-9) thi! grows like a (t) = a_ (0)exp() . t).
4

Since xmax grows like N as N + », errors also grow rapidly
as N + » for fixed t. This method if unusable for +ime-

t dependent calculations.

LTS TV

In Table 13.1, we also list the values of An for n = 1,5,
wilere the eigenvalues of (15.8-$) ars ordered .ccording to
|31 2 13,1 £ ... . The exact eigenvalues of (13.3-5) are
found by seeking solutions of these equations of the form
v(ix,t) = y(x)exp(At), z(x,t) = Z(x)exp(it). It may be easily
verified that the exact eigenvalues of (13.3-5) are given by
A= -u2 with u = nn or u any nonzero solution of the transcendental

equation tan v = y. The exact values of A; and As are also listed
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Table 13.1
[ N x1 x5 Amax
10 -9.8696598 -189.63800 4,272,
15 -9.8696044 - 85.54550 29,439,
.20 -9.6696044 ~ 88.86244 111,226.
P28 -9.8696044 - 88.86244 294,697,
i 30 -9.8696044 - 88.86244 652,722,
3¢ -9.8696044 - 88.86244 1,255,298,
40 -9.8696044 - 88.86244 2,215,880.
Exact -9,8696044 - 88.86244

Tab,2 13.1.
to (13.6-7).

Eigenvalues of the tau appioximation (13.8-9)
The N-4 eigenvalues are ordered so that

A1 2 Ix] € wes € Jag_4l+ALL the eigenvalues are real.

The largest positive eigenvalue Xmax

=243~
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in Table 13.1. Evidently, even though (13.8-9) is unstable as
N * <, it does a good job of reproducing the low-n modes;
approximately /|Xn[ Chebyshev polynomials are required to
resolve the mode with eiganvalue Xn‘ Thus, this version

of the tau method may be useful for eigenvalue calculations
even though it is unconditionally unstable for the initial-
value problem (13.3-5) (as evidenced by the spurious unstable

modes with eigenvalues as large as xmax)'

The tau method behaves similarly when applied to more
difficult problems, like the Orr-Sommerfeld equation for
linear stability analysis of incompressible plane-parallel
shear flows. Low modes are given accurately by the analog
of (13.8-39) (see Orszaq 1971 ), but there appear spurious
unstable modes with large growth rates. Similar spurious
unstable modes appear in finite-difference sclution of the

Orr-Sommerfeld equation (see Gary & Helgason 1979).

There is a simple method to avoid the spurious unstable
modes encountered by (13.8-9). The technique to be described
below alsc eliminates the spurious unstable modes encouniered
in solution of the Orr-Sommerfeld equation. The ider 1is
simply not to combine (13.3-4) into (13.6). Rather, we

expand 7{x,t) as in

N
Tix,t) = an(t)'rn(x) (13.10)
n=0
and solve
db
—a% = v béz) (0 <n <N-2), (13.11)
b= al?) (0 <n <n-2), (13.12)

in addition to (13.9). Here we have dropped two equations
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from the Chebyshev modal equations that result from (13.7 4).
The logic of this modification of the tau method is as follows.
Application cf (13.8) for 0 < n < N-4 is equivalent to
application of (13.12} for 0 < n < N together with (13.11) for

0 < n < N-4. On physical grounds, we may expect that this
procedure will lead to instability because the boundary conditions
¢ = 0 at x = *]1 should be imposed on (13.4) not (13.3), while
the bourdary conditions Ve = 0 at x = t1 should be imposed on
(13.3) only when v > 0. On the other hand, when the system

is truncated as in (13.11-12), each of the dynamical equations
can play their proper role in adjusting the bcundary conditions:
the bcundary conditions y = 0 are imposed on (°3.12) while

the boundary conditions Yy = 0 are imposed on (13.11).

We shall now prove that (13.11-12) is stable for the
special case in which N is =sven with el T b2n+1 = 0 for
alln, t > 0. In this case, y(x,t) and r(x,t) are even functions

of x. To begin ., we observe that (13.11) is equivalent to

2
H=v 3 v (-1 <x <1, t>0)
while (13.12) is equivalent to
2
3
rix,t) = + b .T. (x) .
axX N'N
Therefore,
3 4
[ 3 ‘e
—_—P =y ——% + T .
ata£7 axX NN

Since V is an even function of x, it follows by integration with

respect to x that
2 3

a‘%% - v3i¥ saTm . (13.13)

X
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Also, since y(x,t) is a polynomial of degree N that satisfies
wx(tl,t) = 0, integration by parts gives

1 ' 2_}, 1 2 2';5

/ Yy Ty (1-%x7) " "dx = = I_l[wxx + Xy /(1-x7) T (1-x°) "Pax = 0
since wxx and xwx/(l-xz) are polynomials of degree N-2 so they must

be orthogonal to TN(x). Therefore, taking the Chebyshev inner

product of (13.13) and wx(x,t), we obtain

1 1
- 2 -
5o 1 R0 THax = 20 [ vy 0% ek < 0, 1310

where the last inequality is established using the inequali .y

derived in Example 7.1 (v):

1 2
f_luuxx(l-x )

if u(x) is a polynomial of degree N satisfying u(:l) = 0. The

“%ax < 0

energy bound (13.14) proves stability of the tau approximation

(13.11-12).

Finally, let us discuss methods for the solution of

the primitive equations (13.1) using Chebyshev tau approximations.
A one-dimensional model that embodies the essential features
of (13.1) is obtained by solving (13.1) within the slab -1 <x <1,
~» <y < o, with an assumed solution of the form

7= ux,0)elY, vix,0)elY), p = pix,t)elkY
for some real wavenumber k. Let the Chebyshev expansion
coefficients of u(x,t), v(x,t), p(x,t) be denoted as un(t),
Vn(t)' pn(t) (0 < n < N), respectively. Then an unconditionally
stable, implicit fractional step method for the solution of (13.1)
iky

.
with a forcing term (f(x,t)e ,g(x,t)el“y‘ 1."ad to the right side is
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u, = u () + 8e[-p ™" + £ ()] (0 < n < N-2), (13.15)
v, = Vvyit) + At[-ikp + g (£)] (0 < n < N), (13.16)
3, M s =0 0 <n<N), (13.17)
e - s
u = (=1)"'u =20 (0 < n <N) (13.18)

n=0 ° n=C n - =
u (t+at) = vatuZ) (e+at) = G (0 ¢ n < N-2), (13.19)
v (e1at) - vaev{® (erae) =5 (0 < n < N-2), (13.20)
N n N n

I ()T (t+at) = ] (1) (t+at) = 0. (13.21)
n=0 n=0 )

Here we use the notation that, for example, uéz) represents

the Chebyshev coefficients ot uxx(x,t). The scheme (13.15-21)
is based on backwards Euler time differencing; it is straight-
forward to generalize (13.15-21) +o other more accurate time
differencing methods.

The fractional step (13.15-18) involves computation
of the pressure field by imposition of the incompressibility
condition (13.17). Only the boundary conditions u(:l,t) = 0
are applied because this part of the time step is effectively
inviscid so only the normal flow can be specified at the
boundary. Thus, we drop (13.15) for n = N-1,N in favor of
the two boundary conditions (13.18). The fractional step
(13.19-21) involves the viscous term in (13.1) so boundary
conditions are applied on both tne normal velocity component
u and the tangential velocity component v. Accordingly, the
tau method involves dropping (13.19-20) for n = N-1,N in favor

¢f these boundary conditions.
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The system (13.15-21) is solved as follows. Multiplying
(13.15) by ik and subtracting the result from the Chebyshev

x-derivative of (13.16) gives

7,0 -k = v e - ik 6) + aefg D (e) - ixe_ ()]

(0 <n <N-2).

Substituting ;n = iﬁn(l)/k from (13.17) gives

3 (2)_k25n = ur(12)(t)-kfun(t) + At[-ikgél) (t) - k?

n £ (t)]

: (0 <n <N-2)., ({13.22)

Eg. (13.22) with the boundary conditions (13.18) is of the
same form as (13.19-20) with boundary conditions (13.21).
These equations are best solved by the algorithm discussed
at the end of Sec. 10.

The stability analysis of (13.15-21) is as follows.
The evolution of a perturbation is governed by (13.15-21)
with fn =g, = 0 for all n. Therefore, the solution of (13.22)
is u_ = u (t) for all n. Also, v

n
the implicit scheme (13.19-21) is an unconditionally stable

n = vn(t) for all n. Finally,
scheme for sulution of the heat equation. This proves that

(13.15-21) is unconditionally stable.

The methods discussed in this section extend to give
stable methods for solution of the nonlinear Navier-Stokes equations.
For example, if the forcing term (f,qg) in (13.15-16) is‘chosen
to be the nonlinear terms of the Navier-Stokes equations, our

analysis shows that stability of (13.15-21) is determined by stability

restrictions on the norlinear terms alone.

-248-~

b



14, Miscellaneous Applications of Spectral Methods

In this Section, we survey some special topics regarding
spectral methods. Some of these topics are still under active

investigation, g0 the results reported here are very incomplete.

Complicated Geomatries

There are two ways that spectral methods can be used
to solve problems in complicated geometries without introducirg
basis functions that are special to the geometry and, therefore,
unwieldy and inefficient to use. The two methods are mapping
and patching.

Mapping involves transforming the complicated domain
into a simpler one by means of a coordinate transformation.
Spectral methods are then applied in the simple geometry
using the techniques discussed in earlier sections. For
example, if we wish to solve the heat egquation

{% vix,y,t) = Vzu(x,y,t) (14.1)

in the two-dimensional domain

-l <x<l, «f(x) <y < £(x)
for some given function f(x) with the boundary conditions
that u = 0 on the boundary of the domain, we would proceed

as follows. Firet, we make the coordinate transformation

z = y/f(x) (-1 <z <1) (14.2)
and rewrite (14.1) as
' o a2
g% ul(x,z,t) = ({% - % z g%)zu(x,z,t) + f 2;%7 ui{x,z,t)

-l ¢x<1, -1 <z<1), (14.3)
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Then, we expand u(x,z,t) in 2 double Chebyshev series

and integrate (l14.3). For this purpose, a hybrid numerical
scheme is suggested in which time differencing is stabilized
by a semi-imnlicit method (see Sec. 10) in which a simple
diffusion operator is added and subtracted from (14.3). The
simple diffusion operator is then evaluated using a tau
method (because the tau method is simplest when no complicated
nonlinearities or nonconstant coefficient terms are involved);
the remaining nonconstant coefficient term in (14.3) is then
evaluated using fast Fourler transforms and the collocation
method. The result is an efficient and accurate method for
solution of (14.1).

Techniques like thcse just described have been applied
at a variety of problems with much success. If a convenient
coordinate transformation is available, the mapping technique
combined with appropriate spectral methods may be expected
to be very useful.

The idea of patching is that if the geometry is the
union of several simpler geometries (like an L-shaped :egion)
then spectral approximations can be formulated in each of
the simpler domains and then patched across the boundaries by
requiring that the solution (and an appropriate number of
derivatives) be smooth. When this technique is applied
together with the mapping technique discucssed above, it is
possible to devise spectral shock-fitting methods for the

solution of compressible flow problemz. These methods require

much further investigation to judge their usefulness in practical

problems.
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Poisson's Equation in Two and Higher Dimensions

The Chebyshev tau aquations for Poisson's equation
v2u = £ in the square -1<x<l, -1l<y<l are

(2,0) , ,(0,2)
nrm nm

while thes Dirichlet boundary conditions u = 0 are

u = £ n (05n<N-2,0<mM-2), (14.4)

N n

néo(tl) a =0 (0<meM) (14.5)
N

mgo(*l)m“nm =0 (0<n<N) (14.6)

Here we expand u(x,y) and f(x,y) in the double Chebyshev series

N M u
u(x,y) _ nm
{f(X.y)} - n£0 mgo {fnm} T, (x) T (y) (14.7)

and we denote the Chebyshev expansion coefficients of ap+qu/3xp3yq

by uég'q)~ The 2N+2M+4 boundary conditions are not all linearly

independent; there exist four linear relations among them, namely

N M
YT ™™ = o. (14.8)
n=0 m=0 nm

Thus, (14.4-6) gives (N+1) (M+1l) equations for the (N+1) (M+1l)

unknowns u  (0<n<N, 0<m<M).

Using (10.7) [or (A.20)], the system (14.4-6) can be reduced
to a block trid%ggopgl matrix equation modified by extra full
rows corresponding to the boundary conditions (14.5-6). These
equations can be solved by standard block tridiagonal algorithms
in order N3M or order NM3 operations. If Poisson's equation must
be solved several times with the same values of N and M but different

functions f(x,y), it is more efficient to apply alternative methods.
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A method to solve (14.4-6) in order N2M operations (with
a preprocessing stage that requires order N3 operations) is
as follows., First, we find the N-2 eigenvalues Ap and eigen-

vectors e, (p = 0,...,N=2) of the equations

(2) _ -
enp = xpenp (0 < n < N-2)

The eigenvalues kp are all negative 'as proved in Example 7.3(ii) .

Then we form the (N+1l)x(N+1l) matrix E whose elements are

Enp = e (0 <n <N, 0 <p <N-2)
= <
EnN-1 = %0 ©2nZN
= < <
BN 6n,1 (0 <n <N)
-1

and compute the inverse matrix D = E ~, Since the boundary

conditions (14.5) are satisfied by U it follows that

N-2
u = e v (14.9)
nm p=0 np pm
for suitable vpm for all n,m. Therefore, setting
N
= - <m <M«
Iom n=20 (D) nfom  (05PSN-2, 0<m<M-2), (14.10)
it follows that (14.4-6) become
(0’2) = < <N= <m <M=
Apvpm + vpm gpm (0<p<N-2, 0<m<M=-2) (14.11)
M m
I :1)™v__ = 0 (0<psN-2). (14.12)
m=0 pm '

Eqs. (14.11-12) may be solved efficiently (in order NM operations)

for vpm using the algorithm discussed at the end of Sec. 10.

Once vpm is fovnd, U may be reconstructed from (14.9). The

total operation count is order N°M [from the two matrix multiplies
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(14.9-10)].
The solution of Poisson's equation by the Chebyshev
series method outlined above is very competitive with finite-
diiference solution using fast Poisson solvers. 2Zang &
Haidvogel (1977) present a number of comparisons of the Chebyshev

methods and fast Poisson solvers.

There are two further complications that may arise in
elliptic boundary-value problems. First, the elliptic equation
may have nonconstant coefficients or may even be nonlinear.
Here we recommend that spectral equations be solved using
relaxation methods of the kind advocated by Concus & Golub (1973),
in which the heart of the algorithm is the fast, efficient
solution of Poisson~like equations. Second, the geometry
may be more complicated than a box. In this case, we recommend
the implementation of capacitance matrix techniques (or
equivalent Green's function techniques) in which the problem
to be solved is imbedded in a simpler geometry, like a box
(see Buzbee et al 1971). Again, the heart of the algorithm

is the fast solution of Poisson's equation using (14,.9-12).

Coordinate Singularities

When spectral methods are applied to problems in
cylindrical or spherical geometries, their formualtion may
require special care at the coordinate singularities. These
'pole problems' have been extensively irvestigated (Orszag 1974,
Tang 1977). As a simple example of these effects, let us
consider the computation of the eigenvalues of Bessel's equation

using the Chebyshev tau method (Metcalfe 1974). The problem is
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rrest iyt rre—— v



to find the eigenvalues and eigenfunctions y(x) of

2
y" o+ Ey - Sy = Ny (14.13)

subject to the conditions that y(l) = 0 and that y(x) be finite
for 0 < x < 1. The exact eigenvalues are related to the zeros of the
2

Bessel function Jn: AP = jnp where Jn(jnp)=0, P=1,2,.0.

whea n is even, the eigenfunctions of (14.13) are even
functions of x; when n is odd, the eigenfunctions are odd.
This fact suggests that we represent the solution to (14.13)
in terms of series of even Chebyshev polynomials when n is even

and odd polynomials when n is odd. Thus, for n odd we write

M
y(x) = mzl YuTomey (X) - (14.14)

In Table 14.1, we list numericzl values for the smallest eigenvalue
of (14.13) with n = 7 using the series (14.14), the boundary
condition y(l1) = 0, and the Chebyshev tau method. The convergence
of this method, while very impressive as M increases, is slowed
by the coordinate singularity of (14.13) at x = 0. In general,
series of the form (14.14) behave like x as x * 0. In this
case the terms y'/x and y/x2 are singular at x = 0. The true
eigenfunctions J7(jn7x) behave like x7 as x * 0, as may easily
be shown using Frobenius' method, so none of the terms of (14.13)
are in fact singular ~‘or the exact eigenfunctions,

It is possible to improve the convergence of (14.14) by
imposing additional 'pole conditions', like y'(0) = 0. When
y'(0) = 0 in the series (14.14), the terms of (14.13) are
individually nonsingular. In Tabile 14.1, we also list numerical
values of the smallest eigenvalue of (14.13) with n = 7 and
the two boundary conditions y(l) = 0, y'(0) = 0 .pplied. There
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Table 14.1

-

M Ay with y(1)=0 A with y(1)=y'(0)=0
10 " U7 T124.001290649
14 169.111983340 122,.895944051
18 126.557832251 122.9076202¢25
22 122,991799598 122.,907600279
26 122.908250800 122.907600204
Exact 122.90/6C¢0204 122.907600204
Table 14.1. Smallest eigenvalue of (14.13) with n = 7

obtained using (14.14) and the Chek.. hev tau method.
M is the number of Chebyshev polynomials. The
boundary condition y'(0) = 0 is a pole constraint at

the singular point x

-255-
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is clearly a dramaiic improvement in the rate of convergence.

It is also possible to make the problem less sensitive to

pcle properties near the origin by firsi. multiplying (14.13)

by x2 to eliminate explicitly singular terms and “hen applying
the tau method. The results of the latter trick are essentially
the same as applying the pole cond:tion y'(0) = 0 directly to
(14.13).

If pole conditions are not prcperly applied, it is possible
to degrade sianificantly the accuracy of spect:ral computations.
It is even possible to induce strong instabil: ties that are
absent when proper pole conditions are appliea. These matters

are discussed in detail by Orszag (1974) and Tang(1977).
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15. Survey of Spectral Methods and Applications

———

In this Section, we give a brief survey of spectral
; methods and some of their recent applications. There are
five importa, t features of spectral methods that should be

considered in their formulation and application. They are:

; (i) Rate of convergence - If the solution to a problem

is infinitely differentiable, then a properly designed

spectral method has the property that errors go to zero
faster than any finite power of the number of retained modes.
’l In contrast, finite-difference and finite-element methods

yield finite-order rates of convergence. The important
consequence is that spectral methcds can achieve high accuracy

with little more resolution than is required to achieve moderate

accuracy.
75 (ii) Efficiency - The development of fast transform
!ﬁ methods permits spectral methods to be implemented with
%g comparable efficiency to that of finite difference methods
f with the same number of independent degrees of freedom.
i However, since spectral methods typically require a factor
of 2-5 fewer deqrees of freedom in each space direction to
”ﬁ achieve mcd:rate accuracy (say, 5% error), the spectral
E computations can be considerably more effective. As the
4

, required accuracy incr-ases, the attractiveness of spectral
methods increases.

(iii) Boundary conditions - As shown in earlier Sections

of this monograph, the mathematical features of spectral
mathods follow very closely those of the partial differential
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equation being solved. Thus, the boundary conditions imposed
on spectral aoproximations are normally the same as those
imposed on the differential equation. 1n contrast, finite-
difference methods of higher order than the differential equation
require additional ‘'boundary conditions.' Many of the
complications of finite-order finite-di.ference methods disappear
with the infinite-order-zccurate spectral methods.

Another aspect of the treatment of boundary conditions
by spectral methods is their high resolution of boundary
layers. If the solution to a problem has a houndary layer
of thickness +« , then oniy about l/cs
be retained to achieve higa accuracy. 1In contrast, finite-
difference methods using equally spaced grid points would require
about 1l/¢ grid points tc resolve such a boundary iayer solution.
Moreover, if a conrdinate transformation is employed to improve
the resolution of a boundary or internal layer of thickness € ,
the errors of spectral methods are decreased faster than ary
firite power of ¢ as ¢ ~ 0.

{iv) Discontinuities - Surprisingly, spcctral methods

do a better job of localizing errors than difference schemes
and hence require considerably less local dissipation to smooth
discontinuities.

(v) Bootstiap estimation of accuracy - It is often

possible to estimate the accuracy of spectral computations
by examination of the shape of the spectrum. Thus, in computations
of three-dimensional incompressible flows at high Reynolds numbers,

the mean-square verticity spectrum must not increase abruvtly at
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large wavenumbers (small scales); if the vorticity spectrum
decreases smoothly to 0 as wavenumber increases, it is safe
to infer that the calculation is accurate. On the other hand,
similar criteria for finite-difference methods can be very
misleading.
Let us now survey some applications of spectral methods
to incompressible fluid dynamics. We shall classify the method

according to the boundary conditions and geometry.

(i) Periodic boundary conditions ia Cartesian coordinates -

Here Fourier series are appropriate. Spectral methods have
been reqularly used in three dimensions with 32 x 32 x 32
modes and in two dimensions with 128 x 128 modes to simulate
homogeneous tucbulence. Most operational codes now use
pseudospectral (collocation) methods because aliasing errors
are usually small. The key fast transform methods are described
in detail by Orszag (1971c).

More recently, more ambitious spectral codes have been
developed. The KILOBOX code employs 1024 x 1024 Fourier modes
in two dimersions while the CENTICUBE code uses up to
128 x 128 x 128 modes in three dimensions. These high resolution
codes are now being uszed to study fundamental questions
regarding high ggzpolds nuyber turbulence, including the stoucture
of inertial ranges.

(ii) Rigid boundary conditicns in Cartesian coordinates -

Here Chebyshev polynomials should be employed. Typical
applications to date include numerical studies of turbulent
shear flows and bocundary layer transition. Pseudospectral

methods are used, with Chebyshev polynomials particularly
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convenient because fast Fourier transform methods can be

applied.

(iii) Rigid boundary conditions in cvlindrical geometry -

Here Chebyshev polynomials should be used in radius, Fourier
series in angle, and either Fourier or Chebyshev series in
the axial direction (depending on boundary conditions). Scme
technical aspects of the implementation of Chebyshev series
in rzdius, including pole conditions, is discussed by Orszag
(1974). Applications to date include studies >f transition
in circular Couette flow and pipe Poiseuille flow. In particular,
it should be emphasized that Chebyshev polynomial expansions
are much better suited for serious numerical work than the
apparently more natural choice of Bessel function expansions
in radius. There are two reasons: Chebyshev series converge
faster to ageneral functions regardless of their boundary
conditions and Chebyshev-spectcal methods can be implemented
efficiently by fast transform methods.

(iv) Problems in sphe “cal geometry - Here surface

harmonic expansions, gener.. zed Fourier series, and 'associated'
Chebyshev expansions all have attractive features. A

detailed discussion of these methods is outside the scope of

this monograph, but roughly speaking generalized Fourier series
permit the most efficient transform methods to be developed
followed by associated Chebyshev expansions and then surface
harmonic expansions but surface harmonic expansions are best
w.ch regard toc the pole problem. A variety of applications

of these methods to global atmospheric flows have been made.

(v) Semi-infinite or infinite geometry - Here Chebyshev
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expansions are best if the domain can be mapped or truncated
to a finite domain without serious error. There are two cases
here: additional boundary conditions may or may not be

required at 'infinity.' Here again the formulation of spectral

PRNPEY

methods follows closely _he exact matﬁematics. If additional
boundary conditions, like radiation or outflow boundary conditions,
must be imposed on the truncated domain, then they should

also be applied to the spectral method. On the other hand,

if mappirg without additional boundﬁry conditicns does not
introduce a singularity in the exact equations, no boundary

conditions at 'infinity' are reguired in the spectral approximation.

R ]
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Appendix. Properties of Chebyshev Polynomial Expansions

The Chebyshav polynomial of degree n, Tn(x), is defined
by

Ta(cose) = COSD :. (A.1)
Thus T.(x) -1 T.(X) = x T. (x} = 2x2-l T.(x) = 4x3-3x
’ 0 ’ l 14 2 I 4 3 [

T4(x) = 8x4-8x+1, and so on. Some properties of Chebyshev

polynomials are

|7 (0 ] <1, 7t (x) 1 <n?, (A.2)
P p-1

1 (#1) = )™P 1 (n2-k2)/(2k+1), (A.3)
axP n k=0

lifi T (x)]|= 0Py (neoo; p fixed) (A.4)
axP n ; ’ ’ .

T (£1) = ()", 1. (0) = (-1)?, T (0) =0, (A.5)
n ; t *2n t "2n+l ' *

)
Tzn (0) 0: Tén-i-l (0‘ = (—l)nn.
The following formulae relate the expansion coefficients

an in whe series

£(x) = nzo a_ T () (|x]<1)

to the expansion coefficients bn of

LE(x) = § b T (x) (x| <1)
pep M N =
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for various linear operators L. We use the constants ¢

n
and dn defined by
co ™ 2, c,=0 n<d}, €, = 1 {n>0),
dn =1 (n>0), dn = 0 (n<0).
Some formulae are:
~
LE = £'(x): ¢ b =2 ] pa (A.6)
nn p=n+l P
p+nhodd
T 2 2 .
Lf = f*(x): ¢ b_= ] p(p“-na, (A.74
nn p=n+2
p+n even
1 ,
LE = x£00: By = 70018t (a.8)
2f( )t b = 1 {c .a .+(c_+c )a_+a }
Lf = x Xt On 4 n-2 n-2 n n-1""n n+2 (A.9)
4 = 1
Lf = x £(x)¢ bn = ¢ [Cnn4an_4+(c _3(_;21_2+2cn_2)an_2 (A.10)

2 2
+(‘11-2“‘2cn-l+cn-llﬂsn +cn)an+(cn~1+cn+cn+l+cn+2)an+2+an+4)
>N

-n-1
Lf = LX) -£(0) . % B’)"“ (a.11)

% c b, = 2 I (=) a

p=n+l P

p+nh odd
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o p=n-2

) 12)
£(x)~£{0)-£'(0)X :cb =2 [ (p-n)(-1) Z%a (X
Lf = < non p=n+2 P
p+h even
' -£'(0) . ¢ b =4 pa (a.’ °
e =& (x; - : “n°n p=£+2 P
p-nE? mod 4
[+
£1(x)-£'(0)-£"(0)x , cb = 2{ ) (p-n+1)pa
Lf = xT - e n n p=n+3 P E
p-a2z3 mod 4
! © { .
- I  (p-n-l)pa (a.14.
p=n+5 P
, P~n=1 mod ¢
= 1y . = a A.15)
Lf = X£'(x) :[c b = na  + 2 p£n+2 pa, (2.15

p+n even

Lf = xzf'(x): b, = %{(n-l)an-l+(n+l)(l+dn-l+cn-l)an+1 (A.16)
o«

+4 ] val
p=n+3 p
p+n odd
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Lf = xf"(x): ¢ b = 2n(n+l)a + ] p(p2-n®-1)a
an n+l p=n+3 P
ptn odd
Lf = x*£°(X): cpby = nin-l)a_ + ] p(p-n®-2)a
p=n+2 P
p+neven
Lf « ()
l1-x
-«
with f(21)=0 : c b = -2 | (p.p)a
p=n+2 P
p+neven

Also, if we expand f(q)(x) as in

J49 o (
S £ = [ a ‘P g (x)
q ’
dx n‘o n n
then
(@ _ (q) _ (gq-1)
cn-lan-l i znan *

el -
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K3 ™

(A.19)

(A.20)

.





